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Abstract

The challenge of large-scale Content-Based Image Retrieval (CBIR) has been recently

addressed by many promising approaches. In this thesis, a new approach that jointly op-

timizes the search precision and time for large-scale CBIR is presented. This is achieved

by using binary local image descriptors, such as Binary Robust Independent Elementary

Features (BRIEF) and Binary Robust Invariant Scalable Key-points (BRISK), along with

binary hashing methods, such as Locality Sensitive Hashing (LSH) and Spherical Hashing

(SH).

The proposed approach, named Multi-Bin Search, improves the retrieval precision of

binary hashing methods. This improvement is done through computing, storing and index-

ing the nearest neighbor bins for each bin generated from a binary hashing method. Then,

the search process does not only search the targeted bin, but also it searches the nearest

neighbor bins.

In order to efficiently search inside the targeted bins, a fast exhaustive-search equivalent

algorithm has been used. This algorithm is inspired by Norm Ordered Matching (NOM)

which has been recently proved to yield the same or too close results to exhaustive-search

results with a significant speedup. Also, a results reranking step that increases the retrieval

precision is introduced, but with a slight increase in search time.

Experimental evaluations show that the proposed approach greatly improves the re-

trieval precision of recent binary hashing methods. Also, comparisons with some state-

of-art methods have been carried out in order to further evaluate the effectiveness of the

proposed methods. The compared methods are not depending on either binary hashing

or binary descriptors. In addition, in order to experiment the proposed approach in a real-

world applications, an image search Web application was built based on the implementation

of proposed methods. The operation of the Web application demonstrated the effectiveness

of the proposed approach for real-world applications.
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CHAPTER ONE

INTRODUCTION

This chapter reveals a background about the field of image retrieval and its traditional and

recent applications. Then the objectives of the presented work are introduced, followed by

a quick overview of the rest of this thesis.

1.1 Image Retrieval

Image retrieval is the process of searching and retrieving digital images from a database

of digital images. Image retrieval can be divided into two major categories, image meta

search and Content-Based Image Retrieval (CBIR) [1]. In image meta search, a keyword,

caption or description text is added as a meta data for each image in the database so that

the retrieval is performed over these meta data, as shown in Fig. 1.1. A keyword or search

phrase is supplied as a query, then images with relevant meta data to the query are retrieved

as results. These meta data are often manually attached to images, this is considered a

limitation to such image retrieval methods.

On the other hand, Content-Based Image Retrieval does not include usage of textual

meta data in the retrieval process, as shown in Fig. 1.2 compared to Fig. 1.1. It retrieves

images based on visual similarities in their contents to a user-supplied query image. Such

image contents can be colors, textures, shapes or any other information that can be derived

from the image itself [2]. So the image content has to be analysed and described in a proper

1



Fig. 1.1: General scheme of Image Meta Search.

Fig. 1.2: General scheme of Content-Based Image Retrieval.

representation for the search process. The techniques, tools and algorithms that are used to

describe image content originate from fields such as statistics, signal processing, computer

vision, and pattern recognition. The next section provides a quick overview on the methods

of image content representation.

1.2 Image Representation

Traditional image representation methods use the color, texture, or shape of the image to

describe the content of an image. For example, in the Query By Image Content (QBIC)

system [2], a histogram of image colors is used to represent images. The color histogram

is simply the frequency of occurrence of each color value in the image. Examples of color
2



(a) Coloured image (b) Grayscale image

(c) Colour histogram (d) Grayscale histogram

Fig. 1.3: Examples of image histograms. Part (c) shows the colour histogram of the image
in part (a). Part (d) shows the grayscale histogram of the image in part (b).

and grayscale histograms are shown in Fig. 1.3. It is obvious that color histograms do not

contain any information about image structure, they only describe the color distribution in

the image. Recent image representation methods use more advanced techniques such as

image keypoint descriptors, or interest point descriptors.

Image keypoints are points in the image that have a well-defined positions in image

space and they are stable under local and global variations in the image scaling, rotation,

illumination, etc. Such interest points can be reliably computed with high degree of repro-

ducibility. These image keypoints are used to generate a numerical representation based on

the pixel information in the image region around each keypoint. The resulting numerical

representations are the keypoint descriptor vectors, or feature vectors [3]. Image descrip-

3



Fig. 1.4: An example of keypoints generated by BRISK from two different views of an
image. The keypoints regenerated with a high degree of similarity in their descriptors are
connected with green lines. This image is taken from [6].

tors can be local, i.e. one descriptor for each keypoint in the image, or global, i.e. one

descriptor for the whole image.

Among the most famous local image detectors and descriptors are Scale Invariant Fea-

ture Transform (SIFT) [3] and Speeded Up Robust Features (SURF) [4]. Another example

for global image descriptors is the GIST [5]. These descriptors have a very high discrimina-

tive power. Their drawback is the high dimensionality, where the size of a single descriptor

normally ranges from 64 to 960 bytes, which requires much storage and processing com-

pared to nowadays real-time and large-scale applications.

Other modern image representation methods involve binary keypoint descriptors such

as Binary Robust Independent Elementary Features (BRIEF) [7], Binary Features from

Robust Orientation Segment Tests (BFROST) [8], Binary Robust Invariant Scalable Key-

points (BRISK) [6], Oriented and Rotated BRIEF (ORB) [9], and Fast Retina Key-points

(FREAK) [10]. These binary descriptors are smaller in size and faster in generation than

previously mentioned traditional descriptors. Figure 1.4 shows an example of local image

keypoints generated by BRISK from two different views of an image. The keypoints regen-

erated with a high degree of similarity in their descriptors are connected with green lines.

Binary local image descriptors will be discussed in further detail later in this thesis.
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1.3 Large-Scale Content-Based Image Retrieval

Large-scale image datasets are considered to contain thousands, millions, or more images.

Examples of such datasets are the images on the World Wide Web (WWW), medical imag-

ing datasets, video frames extracted from surveillance cameras, etc. Searching large-scale

image datasets containing millions of images using brute-force matching, i.e., matching a

query image with all images in the dataset, image by image, is not a practical task. This

is true even if the dataset contains only a few hundreds of images. This is due to many

reasons:

• The large number of images in the dataset.

• The high dimensionality of image descriptors which usually consist of tens or hun-

dreds of dimensions per descriptor.

• The method used for matching pairs of images.

• The complexity of the distance measure used to match descriptors, which is a major

factor in speeding up the retrieval process and increasing the retrieval precision.

To reduce the impact of the reasons mentioned above, approximations to the image

retrieval algorithms have to be made. Many of these approximations are included under

the general problem of Approximate Nearest Neighbor (ANN) search. One of the most

notable contributions to the approximation of the image retrieval process is the Bags of

Visual Words (BoVW) [11], or the Bags of Features (BoF), as called in some literature.

This method aimed to represent each image with a single vector of unified dimensionality

in order to avoid matching sets of descriptors from every image. This method was proved

to gain a high rate of retrieval precision but with a drawback of ignoring spatial image

information, as addressed in [12].

There are three reasons for the success of the BoVW representation. First, this represen-

tation benefits from powerful local descriptors, such as the SIFT descriptor [3]. Second, the

BoVW vector representation can be compared with standard distances. Third, the BoVW
5



vector can be high dimensional, in which case the vectors are sparse and inverted lists can

be used to implement efficient search. However, two factors limit the number of images

that can be indexed in practice: the search time itself, which becomes prohibitive when

considering large number of images, and the memory usage per image.

Another method towards scalable image retrieval is the Vocabulary Tree [13]. In the

Vocabulary Tree method, all local image descriptors are hierarchically quantized using the

k-means clustering algorithm. Each cluster represents a set of approximately matched de-

scriptors. Then all the resulting clusters are indexed into a tree structure, which is called the

Vocabulary Tree. This index also keeps track of the images to which each descriptor be-

longs. On a query process, the tree is searched using a breadth-first-search order, matching

the query descriptor with all cluster centres at each level of the tree, until the nearest leaf

cluster is found. Once the nearest leaf cluster to the query descriptor is found, all images

having descriptors residing in this cluster are considered candidate results. These steps are

repeated for each descriptor in the query image. Then all candidate images are sorted in

descending order based on the number of descriptors found in all targeted leaf clusters.

Another state-of-art approach [14] jointly optimizes dimensionality reduction and in-

dexing in order to obtain a precise vector comparison as well as a compact image rep-

resentation. This approach uses the Vector of Locally Aggregated Descriptors (VLAD)

[15] to aggregate local image descriptors into a compact image representation. Then, the

dimensionality of the aggregated image descriptor is then reduced using Principal Compo-

nent Analysis (PCA) [16], which is a useful tool for feature extraction and dimensionality

reduction.

Focusing on the high dimensionality of image descriptors, many methods have been

proposed to face this curse of dimensionality. These methods are based on Hashing algo-

rithms, more specifically, Locality Sensitive Hashing (LSH). The basic idea is to hash the

data points so that similar items are mapped to the same buckets or bins with high prob-

ability, the number of buckets or bins is much smaller than the universe of data points.

6



Such methods include LSH [17], Spectral Hashing [18], and Spherical Hashing [19]. The

hashing methods are discussed in further detail later in this thesis.

1.4 Applications of CBIR

CBIR is the engine for many real-world, machine learning, and compute vision applica-

tions. Such applications include object recognition [13], finding partial image duplicates

on the web [20], searching individual video frames [11], image classification [21], robot

localization [22], and medical imaging [23].

Other applications include art gallery and museum management, architectural and en-

gineering design, interior design, remote sensing and management of earth resources, ge-

ographic information systems, scientific database management, weather forecasting, fabric

and fashion design, trademark and copyright database management, law enforcement and

crime prevention, picture archiving and communication systems, and home entertainment

[24].

One of the most interesting applications of CBIR is online image search engines. Such

image search engines include Google Images [25] and TinEye Reverse Image Search [26].

1.5 The Objectives of The Thesis

The objectives of the presented work can be summarized as follows:

• Providing an overview on the field of Image Retrieval.

• Reviewing the recent state-of-the-art methods and algorithms in the area of Content-

Based Image Retrieval.

• Introducing a new approach to Content-Based Image Retrieval that is suitable for

nowadays large-scale and real-time applications. This approach is based on recent

state-of-the-art algorithms and methodologies of the field.

7



1.6 The Organization of The Thesis

The rest of this thesis is organized as follows:

Chapter 2, Related Works, gives a detailed review on some recent state-of-the-art meth-

ods and algorithms that have been proposed in the area of CBIR. The chapter is focused on

methods and algorithms that are used to build up the proposed approach of this work.

Chapter 3, Multi-Bin Search, provides a detailed presentation and explanation of the

proposed approach of this work, which is called Multi-Bin Search, discussing its advan-

tages and weakness points.

Chapter 4, Results, shows a detailed evaluations and comparisons of the proposed ap-

proach against other state-of-the-art approaches.

Chapter 5, Conclusions and Future Works concludes the work done through this thesis

and presents the future works to be carried out based on this work.

8



CHAPTER TWO

RELATED WORKS

This chapter provides a quick review on recent research work related to the field of content-

based image retrieval. It also provides a detailed review on the specific methods and

algorithms on which this work is depending. Section 2.1 presents the recent work on

binary local image descriptors, and discusses the Binary Robust Invariant Scalable Key-

points (BRISK) [6] in some detail. Section 2.2 presents the recent work on binary hashing

methods, and provides more details on Locality-Sensitive Hashing (LSH) [17] and Spher-

ical Hashing [19]. Section 2.3 presents the recent work on exhaustive-search equivalent

algorithms and discusses Norm Ordered Matching (NOM) [27] in some detail.

2.1 Binary Local Image Descriptors

Decomposing an image into local keypoints of interest, or features, is a widely applied tech-

nique for representing digital images. Many computer applications, including those related

to Content-Based Image Retrieval, rely on the presence of stable, representative features in

the image. This is the work targeted by image keypoint detectors and descriptors.

The ideal keypoint detector aims to finds salient image regions such that they can be

re-detected even if the image is modified or changed in terms of viewpoint, illumination,

scale, etc. More generally, these salient image regions are robust to all possible image

transformations. Similarly, the ideal keypoint descriptor captures and represents the most

9



important and distinctive information content enclosed in the detected salient regions, such

that the same region or structure can be recognized if encountered. In addition to fulfilling

these properties to achieve the desired quality of detected keypoints, the speed of detection

and description needs to be optimized to fit within the time constraints of the task at hand.

In principle, state-of-the-art image keypoint detectors and descriptors target applica-

tions with either specific requirements in accuracy or speed of computation. Lowe’s SIFT

algorithm [3] is widely accepted as one of highest quality options currently available, this

is due its promising distinctiveness and invariance to a variety of common image trans-

formations. However, SIFT requires a high expense of computational cost. On the other

end of the spectrum, a combination of the FAST [28] keypoint detector and the BRIEF

[7] approach to image keypoint description presents a much more suitable alternative for

real-time applications. However, despite the obvious advantage in computational speed,

the latter approach suffers in terms of reliability and robustness. This is due to its minimal

tolerance to image distortions and transformations, in particular to in-plane rotation and

scale change.

The major difficulty in the process of extracting suitable features from an image lies

in the balancing of two competing goals: high quality description and low computational

power. Among recent approaches, the most relevant work targeting this problem is SURF

[4] which has been demonstrated to achieve robustness and speed.

A recently introduced method for image keypoint detection and description is Binary

Robust Invariant Scalable Keypoints (BRISK) [6], which is discussed in some detail in

subsection 2.1.1. BRISK is the method used in this work for generating image keypoint

descriptors. BRISK has been proven to achieve comparable quality to SURF with much

less computation time for both generation and matching of keypoints.

10



2.1.1 Binary Robust Invariant Scalable Keypoints (BRISK)

Binary Robust Invariant Scalable Keypoints (BRISK) [6] is an approach to local image

keypoint detection and description that has been proven to provide fast keypoint detection,

description and matching with high precision. It is rotation invariant and scale invariant to

a significant extent, achieving performance comparable to the state-of-the-art, with respect

to SURF and SIFT, while dramatically reducing computational cost. Also, the modularity

of the BRISK method allows the use of the BRISK detector in combination with any other

keypoint descriptor and vice versa, BRISK descriptor can be used in combination with any

other keypoint detector. This modularity allows optimization for the desired performance

and the task at hand.

Scale-Space Keypoint Detection

BRISK detection methodology is inspired by Adaptive and Generic Accelerated Segment

Test(AGAST) [29], an algorithm for detecting regions of interest in the image. AGAST is

essentially an extension for accelerated performance of the now popular FAST (Features

from Accelerated Segment Test) [28], which has been proven to be a very efficient basis

for feature extraction.

With the aim of achieving invariance to scale, which is crucial for high-quality key-

points, BRISK searches for maxima not only in the image plane, but also in scale-space

using the FAST score s as a measure for saliency. Despite discretizing the scale axis at

coarser intervals than in alternative high-performance detectors, the BRISK detector esti-

mates the true scale of each keypoint in the continuous scale-space.

In BRISK, the scale-space pyramid layers consist of n octaves ci and n intra-octaves

di, for i = 0,1, ...,n−1 and typically n = 4. The octaves are formed by progressively

half-sampling the original image (corresponding to c0). Each intra-octave di is located

in-between layers ci and ci+1, as illustrated in Fig. 2.1.
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Fig. 2.1: BRISK scale-space interest point detection [6]

The first intra-octave d0 is obtained by down-sampling the original image c0 by a factor

of 1.5, while the rest of the intra-octave layers are derived by successive half-sampling.

Therefore, if t denotes scale then t(ci) = 2i and t(di) = 2i×1.5. It is important to note here

that both FAST and AGAST provide different alternatives of mask shapes for keypoint

detection. BRISK uses the 9-16 mask. This mask requires at least 9 consecutive pixels in

the 16- pixel circle to either be sufficiently brighter or darker than the central pixel for the

FAST criterion to be fulfilled, as shown in Fig. 2.2.

Keypoint Description

Given a set of keypoints (consisting of sub-pixel refined image locations and associated

floating-point scale values), the BRISK descriptor is composed as a binary string by con-
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Fig. 2.2: FAST corner detection [28]

catenating the results of simple brightness comparison tests. In BRISK, the characteristic

direction of each keypoint is determined in order to allow for orientation-normalized de-

scriptors and hence achieve rotation invariance which is key to general robustness. Also,

the brightness comparisons are carefully selected with the focus on maximizing descrip-

tiveness.

The key concept of the BRISK descriptor makes use of a pattern used for sampling

the neighborhood of the keypoint. The pattern, illustrated in Fig. 2.3, defines N locations

equally spaced on circles concentric with the keypoint. In order to avoid aliasing effects

when sampling the image intensity of a point pi in the pattern, Gaussian smoothing is

applied with standard deviation σi proportional to the distance between the points on the

respective circle.

The sampling pattern is positioned and scaled accordingly for a particular keypoint k

in the image. Considering one of the N × (N − 1)/2 sampling-point pairs (pi, p j), the

smoothed intensity values at these points which are I(pi,σi) and I(p j,σ j), respectively, are

used to estimate the local gradient g(pi, p j) by

g(pi, p j) = (p j− pi) ·
I(p j,σ j)− I(pi,σi)

‖ (p j− pi) ‖2 (2.1)

Considering the set A of all sampling-point pairs:
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Fig. 2.3: BRISK sampling pattern [6]

A=
{
(pi, p j) ∈ R2×R2|i < N∧ j < i∧ i, j ∈ N

}
(2.2)

a subset of short-distance pairings S and another subset of long-distance pairings L are

defined:

S = {(pi, p j) ∈ A| ‖ p j− pi ‖< δmax} ⊆ A (2.3)

L= {(pi, p j) ∈ A| ‖ p j− pi ‖> δmin} ⊆ A (2.4)

The threshold distances are set to δmax = 9.75t and δmin = 13.67t (t is the scale of

the keypoint k). Iterating through the point pairs in L, the overall characteristic pattern

direction of the keypoint k is estimated as:

g =

(
gx

gy

)
=

1
L
· ∑
(pi,p j)∈L

g(pi, p j) (2.5)
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where gx and gy are the components of the pattern direction along the x-axis and the y-axis,

respectively.

For the formation of the rotation- and scale-normalized descriptor, BRISK applies the

sampling pattern rotated by α = arctan(gy,gx) around the keypoint k. The bit-vector de-

scriptor dk is assembled by performing all the short distance intensity comparisons of point

pairs (pα
i , pα

j ) ∈ S (pα
i , pα

j are pi, p j rotated by α), such that each bit b corresponds to:

b =

 1, I(pα
j ,σ j)> I(pα

i ,σi)

0, otherwise
∀(pα

i , pα
j ) ∈ S (2.6)

Descriptor Matching

Matching two BRISK descriptors is a simple computation of their Hamming distance. The

Hamming distance dH is simply the number of different bits in a pair of binary strings, i.e.,

the number of ones in the binary string resulting from the bitwise XOR operation between

a pair of binary strings. The Hamming distance between two descriptors is a measure of

their dissimilarity. The number of ones in a binary string is known as its population count

(POPCNT), so the Hamming distance between two descriptors vi, v j can be written as:

dH(vi,v j) = POPCNT (vi⊕ v j) (2.7)

The operations in the Hamming distance involves a bitwise XOR followed by a bit

count, which can both be computed very efficiently on modern architectures. The pop-

ulation count of binary strings can be efficiently computed by the POPCNT instruction

which was recently introduced with the Nehalem-microarchitecture-based Core i7 proces-

sors [30].
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Fig. 2.4: General hashing compared to Locality-Sensitive Hashing

2.2 Binary Hashing Methods

The general idea of hashing is to represent data points with some identifiers or codes while

avoiding collisions of these codes. The idea of LSH is to exploit collisions for mapping

points which are nearby (in geometrical sense) into the same bin or bucket, as shown in

Fig. 2.4. Binary hashing is the process of encoding high dimensional data into lower di-

mensional binary codes. The hashing functions ensures that near neighbor data points gen-

erates near or similar binary codes. This section provides a detailed discussion about some

binary hashing methods used for solving Approximate Nearest Neighbor (ANN) problems.

These methods are used in the proposed work for achieving better speed-up and accuracy.

2.2.1 Locality-Sensitive Hashing (LSH)

Locality-Sensitive Hashing (LSH) is an approach to solving approximate nearest neigh-

bor problems that allows to quickly find similar entries in large databases. This approach

belongs to an interesting class of algorithms that are known as randomized algorithms.

A randomized algorithm does not guarantee an exact answer but instead provides a high

probability guarantee that it will return the correct answer or one close to it. By investing

additional computational effort, the probability can be pushed as high as desired [31].

LSH is based on the simple idea that, if two points are close together, then after a

projection operation these two points will remain close together. This idea can be easily

understood using the examples shown in Fig. 2.5. Two points that are close together on the

sphere are also close together when the sphere is projected onto the two dimensional page.

This is true no matter how the sphere is rotated. Two other points on the sphere that are far
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Fig. 2.5: Projections of two close (circles) and two distant (squares) points onto the printed
page [31]

apart will, for some orientations, be close together on the page, but it is more likely that the

points will remain far apart.

To further expand this basic idea, starting with a random projection operation that maps

a data point from a high-dimensional point to a low-dimensional subspace. First, this keeps

track of points that are close to the query point. Second, projections from a number of

different directions are created to keep track of the nearby points. The list of nearby points

that appear close to each other in more than one projection are the most close to the query

point.

Random Projections: The Dot Product

At the core of LSH is the scalar projection (or the dot product), given by h(~v) =~v ·~x, where

~x is a query point in a high-dimensional space, and~v is a vector with components that are

selected at random from a Gaussian distribution. This scalar projection is then quantized

into a set of hash bins, with the intention that nearby items in the original space will fall

into the same bin. The resulting full hash function is given by

hx,b(~v) =

⌊
~x ·~v+b

w

⌋
(2.8)
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where b·c is the floor operation, w is the width of each quantization bin, and b is a random

variable uniformly distributed between 0 and w.

For the projection operator to be locality-sensitive, it must project nearby points to

positions that are close together. This requires that:

• For any points p and q in Rd that are close to each other, there is a high probability

P1 that they fall into the same bucket

PH [h(p) = h(q)]≥ P1 for ‖ p−q ‖≤ R1 (2.9)

• For any points p and q in Rd that are far apart, there is a low probability P2 < P1 that

they fall into the same bucket

PH [h(p) = h(q)]≤ P2 for ‖ p−q ‖≥ cR1 = R2 (2.10)

where c is a small constant.

In Equations 2.9 and 2.10, ‖ · ‖ is the L2 vector norm and R2 > R1. Due to the linearity

of the dot product, the difference between two image points ‖ h(p)−h(q) ‖ has a magnitude

whose distribution is proportional to ‖ p−q ‖, therefore, P1 > P2.

Random Projections: The k Dot Products

The difference between P1 and P2 can be further magnified by performing k dot products in

parallel, where k ∈ Z+. This increases the ratio of the probabilities that points at different

separations will fall into the same quantization bin, since (P1/P2)
k > (P1/P2). The resulting

projection, is obtained by performing the k independent dot products to transform the query

point~v into k real numbers. As with the scalar (dot product) projection, the k inner products

are quantized, as shown in Equation 2.8, with the intention that nearby points will fall in

the same bucket in all dimensions.
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Fig. 2.6: An example of 2-dimensional binary projections for LSH

Increasing the quantization bucket width w will increase the number of points that fall

into each bucket. To obtain the final nearest neighbor result, a linear search have to be

performed through all the points that fall into the same bucket as the query, so varying

w effects a trade-off between a larger table with a smaller final linear search, or a more

compact table with more points to consider in the final search.

Binary LSH

Binary hashing can be simplified by defining a projection hyperplane for each hashing

function (hyperplanes are planes defined in more than three dimensions). The projection

hyperplane is represented by its perpendicular vector ~x. Data points that fall on or above

the hyperplane are given a code of 1 and data points that fall under the hyperplane are given

a code of 0. The total bits resulting from the hash functions constitutes the binary code.

The generated binary codes may be used to build one or more hash tables or any other

indexing data structure which is used in the search process. A simplified 2-dimensional

binary hashing example is shown in Fig. 2.6. A binary hashing function can be written as

hx(~v) =

 1, ~x ·~v≥ 0

0, ~x ·~v < 0
(2.11)
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Fig. 2.7: Spherical Hashing simplified on two dimensions

2.2.2 Spherical Hashing

Spherical Hashing (SH) [19] is an efficient binary hashing approach, in which all data

vectors are projected over hypersphere-based, instead of hyperplanes, hashing functions.

Each hash function is represented by a hypersphere with some center vector and a radius,

as shown in Fig. 2.7. In Spherical Hashing, the hash functions are optimized to balance the

partitioning of data and the independency between them. Unlike LSH, each spherical hash

function generates a binary bit depending on whether a vector resides inside or outside a

hypersphere. Spherical Hashing has been proved more efficient than most of the state-of-

the-art hashing methods.

Binary Code Generation with Spherical Hashing

Given a set of n data points in a D-dimensional space

X = {x1, ...,xn}, xi ∈ RD (2.12)
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A binary code corresponding to each data point xi is defined by

bi = {0,1}c (2.13)

where c is the length of the code.

A set of Spherical Hashing functions

H(x) = (h1(x), ...,hc(x)) (2.14)

maps points in RD into the binary hypercube {0,1}c. Each spherical hashing function hk(x)

is defined by a hypersphere. Each hypersphere is defined by a pivot pk ∈RD and a distance

threshold tk ∈ R+ as the following:

hk(x) =

 0, d(pk,x)> tk

1, d(pk,x)≤ tk
(2.15)

where d(·, ·) denotes the Euclidean distance between two points in R+; various distance

metrics (e.g., Lp metrics) can be used instead of the Euclidean distance. The value of each

spherical hashing function hk(x) indicates whether the point x is inside the hypersphere

whose center is pk and radius is tk.

The key difference between using hyperplanes and hyperspheres for computing binary

codes is their abilities to define a closed region in RD that can be indexed by a binary code.

To define a closed region in a d-dimensional space, at least d +1 hyperplanes are needed,

while only a single hypersphere is sufficient to form such a closed region in an arbitrarily

high dimensional space. Furthermore, unlike using multiple hyperplanes a higher number

of closed regions can be constructed by using multiple hyperspheres, while the distances

between points located in each region are bounded. In addition, a hyperplane can be ap-

proximated by a large hypersphere (e.g. a large radius and a far-away center).
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Spherical Hamming Distance

Most hyperplane-based binary embedding methods use the Hamming distance between

two binary codes, which measures the number of different bits, i.e. |bi⊕ b j|, where ⊕ is

the XOR bit operation and | · | denotes the number of 1 bits in a given binary code (recall

Equation 2.7). This distance metric measures the number of hyperplanes that two given

points reside in the opposing side of them. The Hamming distance, however, does not well

reflect the property related to defining closed regions with tighter bounds, which is the core

benefit of using spherical hashing functions.

To fully utilize desirable properties of spherical hashing functions, the following dis-

tance metric was proposed, the spherical Hamming distance (dshd(bi,b j)), between two

binary codes bi and b j generated by spherical hashing:

dshd(bi,b j) =
|bi⊕b j|
|bi∧b j|

(2.16)

where |bi∧b j| denotes the number of common 1 bits between two binary codes (the bitwise

AND operation).

Having the common 1 bits in two binary codes gives tighter bound information than

having the common 0 bits in spherical hashing functions. This is mainly because each

common 1 bit indicates that two data points are inside its corresponding hypersphere, giving

a stronger cue in terms of distance bounds of those two data points.

Independence between Spherical Hashing Functions

Achieving balanced partitioning of data points for each hashing function and the inde-

pendence between hashing functions has been known to be important [18, 32, 33], since

independent hashing functions distribute points in a balanced manner to different binary

codes. It has been known that achieving such properties lead to minimizing the search time

[32] and improving the accuracy [33].
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To achieve this independency between spherical hashing functions, each hashing func-

tion hk is defined to have equal probability for 1 and 0 bits as the following:

Pr[hk(x) = 1] = Pr[hk(x) = 0] =
1
2
, x ∈ X , 1≤ k ≤ c (2.17)

this achieves balanced partitioning of data points for each bit.

It is known that two probabilistic events Vi and Vj to are independent if and only if

Pr[Vi ∩Vj] = Pr[Vi] ·Pr[Vj]. If Equation 2.17 is achieved, the independence between two

hashing function can satisfy the following equation:

Pr[hi(x) = 1,h j(x) = 1] = Pr[hi(x) = 1] ·Pr[h j(x) = 1] =
1
2
· 1

2
=

1
4

(2.18)

given that x ∈ X and 1≤ i, j ≤ c.

Iterative Optimization

An iterative optimization process is used in Spherical Hashing for:

• Computing c different hyperspheres, i.e. their pivots pk and distance thresholds tk.

• Satisfying balanced partitioning and independency constraints shown in Equations

2.17 and 2.18.

As the first phase of the iterative process, a sample subset S = {s1,s2, ...,sm} from data

points X are chosen to approximate its distribution. Then the pivots of c hyperspheres are

initialized with randomly chosen c data points in the subset S.

As the second phase of the iterative process, the pivots of hyperspheres are refined and

their distance thresholds are computed. To help these computations, the following two
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variables are computed, oi and oi, j, given 1≤ i, j ≤ c:

oi = |{sk|hi(sk) = 1, 1≤ k ≤ m}|

oi, j = |{sk|hi(sk) = 1,h j(sk) = 1,1≤ k ≤ m}|
(2.19)

where | · | is the cardinality of the given set. oi measures how many data points in the subset

S have 1 bit for ith hashing function and is used to satisfy balanced partitioning for each bit

(recall Equation 2.17). Also, oi, j measures the number of data points in the subset S that are

contained within both of two hyperspheres corresponding to ith and jth hashing functions.

oi, j will be used to satisfy the independence between ith and jth hashing functions (recall

Equation 2.18) during the iterative optimization process.

Once oi and oi, j are computed with data points in the subset of S, two alternating steps

are run to refine pivots and distance thresholds for hyperspheres. First, the pivot positions of

two hyperspheres are adjusted in a way that oi, j becomes closer to or equal to m
4 . Intuitively,

for each pair of two hyperspheres i and j, when oi, j is greater than m
4 , a repulsive force is

applied to both pivots of those two hyperspheres (i.e. pi and p j) to place them farther away.

Otherwise an attractive force is applied to locate them closer. Second, once pivots are

computed, the distance threshold ti of ith hypersphere is adjusted such that oi becomes m
2

to meet balanced partitioning of the data points for the hypersphere (recall Equation 2.17).

The iterative optimization process is performed until the computed hyperspheres do not

make further improvements in terms of satisfying constraints. Specifically, the mean and

standard deviation of oi, j are considered as a measure of the convergence of the iterative

process. Ideal values for the mean and standard deviation of oi, j are m
4 and zero respectively.

However, in order to avoid over-fitting, the iterative process is stopped when the mean and

standard deviation of oi, j are within εm% and εs%, error tolerances, of the ideal mean

and standard deviation of oi, j respectively; it was found that too low error tolerances lead

to over-fitting while the values near 10% and 15% for εm% and εs%, respectively, give

reasonable results.
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Fig. 2.8: Left: a repulsive force between two pivots pi and p j is computed since their over-
lap oi, j is larger than the desired amount. Right: an attractive force is computed because
the overlap is smaller than the desired amount.

A (repulsive or attractive) force from pivot p j to pivot pi, fi← j, is defined as the follow-

ing (Fig. 2.8):

fi← j =
1
2

oi, j−m/4
m/4

(pi− p j) (2.20)

An accumulated force, fi, is the average of all the forces computed from all the other pivots

as the following:

fi =
1
c

c

∑
j=1

fi← j (2.21)

Once the accumulated force fi is applied to pi, then pi is updated simply as pi + fi. The

whole iterative optimization process is shown in Algorithm 1, Fig. 2.9.

2.3 Exhaustive-Search Equivalent Algorithms

Many exhaustive-search equivalent algorithms were introduced recently. These algorithms

yields the same or too close results to exhaustive-search results with a significant speedup.

Most of these algorithms depends on examining data points before matching them with

the query point. Examples of these algorithms are Partial Distortion Elimination (PDE)

[34], Projection Kernels (PK) [35], Low Resolution Pruning (LRP) [36] and Norm Ordered

Matching (NOM) [27].

NOM has been proved to exceed other algorithms, in addition, it is easy to implement

and adapt. Also, NOM and PDE can be used with any metric distance measure, including
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Algorithm 1 Spherical hashing iterative optimization process
Input: sample data points X = {x1,x2, ...,xm}, error tolerances εm, εs, and the number of

hashing functions c
Output: pivot positions p1, ..., pc and distance thresholds t1, ..., tc for c hyperspheres

1: Initialize p1, ..., pc with randomly chosen c data points from the set S
2: Determine t1, ..., tc satisfy oi =

m
2

3: Compute oi, j for each pair of hashing functions
4: repeat
5: for i = 1 to c−1 do
6: for j = i+1 to c do
7: fi← j =

1
2

oi, j−m/4
m/4 (pi− p j)

8: f j←i =− fi← j
9: end for

10: end for
11: for i = 1 to c do
12: fi =

1
c ∑

c
j=1 fi← j

13: pi = pi + fi
14: end for
15: Determine t1, ..., tc satisfy oi =

m
2

16: Compute oi, j for each pair of hashing functions
17: until avg(oi, j)≤ εm

m
4 and std-dev(oi, j)≤ εs

m
4

Fig. 2.9: Spherical hashing iterative optimization process

the Hamming distance which is used in this work, where PK and LRP are designed for L2

distance. In NOM, not all descriptors are examined to find the nearest ones, but only a par-

tition of them based on their norm values. This algorithm has been proved to significantly

speed up exhaustive search. Follows a detailed overview about NOM.

2.3.1 Norm Ordered Matching (NOM)

NOM was originally proposed to solve the image template matching problem [27]. This

section provides an explanation and adaptation of NOM in general form.
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Fig. 2.10: NOM derivation. ax,bx,cx are N-Dimensional vectors, q is the query vector. m
is the current minimal distance.

Derivation of NOM

Representing a set of data points by N-dimensional vectors xi ∈ RN as shown in Fig. 2.10,

let d(p) be a norm defined over the vector space RN , so d(p−q) represents the dissimilarity

measure between the two N-Dimensional points p and q derived from the norm d.

Since d is a norm, it satisfies the triangle inequality, so we have:

|d(p)−d(q)| ≤ d(p−q) (2.22)

This splits into two inequalities:

d(p)−d(q)≤ d(p−q) (2.23)

− (d(p)−d(q))≤ d(p−q) (2.24)
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Equation 2.23 can be written as:

d(p)≤ d(q)+d(p−q) (2.25)

If m is the current minimum distance to input query q as in Fig. 2.10, and for a candidate

near neighbor p, it is found that (as the case for the cx points in Fig. 2.10):

d(p)> d(q)+m (2.26)

Comparing Equations 2.23 and 2.26, it is found that m < d(p− q) so we can directly

reject p without any further calculations, as it cannot improve the current minimum m.

In the same manner, Equation 2.24 can be written as:

−d(p)≤ d(p−q)−d(q) (2.27)

d(p)≥ d(q)−d(p−q) (2.28)

If for a candidate point p it is found that (as the case for the bx points in the Fig. 2.10):

d(p)< d(q)−m (2.29)

Comparing Equations 2.24 and 2.29, it could be found that m < d(p− q) so p can be

directly rejected without any further calculations, as it cannot improve the current minimum

m.

Based on Equations 2.26 and 2.29 a lower and upper bounds can be derived on the

allowable values of the norm of any candidate point d(p). First two related quantities are

defined:

QStart = d(q)−m, QEnd = d(q)+m (2.30)
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Only points p where QStart ≤ d(p)≤ QEnd would need to be examined (ax points in

Fig. 2.10) and all other points (bx,cx points) would be skipped without any examination.

An important thing to note here is that QStart and QEnd are both dependent on m, and

finding a good m fast allows to tighten the range between QStart and QEnd fast and hence

reducing the amount of examined points.

Evaluation Order

A crucial factor for the performance of any matching algorithm is how to find approximate

values (either lower or upper bounds) of the true minimum distance early in the process, as

this allows to reject most candidate points without the lengthy computing-intensive distance

evaluation step. NOM proposed a novel evaluation order inspired by the bounding method

derived previously in the text.

Considering Fig. 2.10, it can be noticed that there is a high probability of reaching

closest point to query if points that are closer to query are examined first, in terms of norm.

It is true that this might allow distant points from q to be evaluated before other closer

points (e.g. in Fig. 2.10 a1 would be evaluated before b1 and c1 even though they are closer

to q), but it was empirically proved that close points to q would be captured fast enough

and with minimal number of unneeded evaluation.

The process is illustrated in Fig. 2.11. First the norm d(p) is computed for all points

and stored in an array, then the array is sorted based on the value of the norm d(p), this is

done once as an initialization step. Every time when a query point q is received, its norm

d(q) is computed, then binary search is performed over the list of sorted norms to find

closest points to it (in terms of norm value), then candidates are evaluated in an up-down

order, i.e., if binary search gave location x, candidates are evaluated in this order x, x− 1,

x+ 1, x− 2, x+ 2, and every time a point that satisfies d(p− q) < m is encountered, m,

QStart, and QEnd are updated accordingly.
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Fig. 2.11: NOM evaluation order of candidate points to input query Q according to dissim-
ilarity measure derived from norm d.

Once a candidate point p is found that satisfies d(p) < QStart or d(p) > QEnd,

evaluation is stopped at that side, as this would be meaningless since the list of candidates

is ordered by norm, for example, if d(p) < QStart then it is time to stop searching the

decreasing values of x since the list is sorted and all candidates in that direction would

certainly be also less than QStart. Thus sorting the array gives two benefits, it allows to

reach points close to real matching point fast and it also allows to prune whole side of the

array at a single step without any further evaluation of inequality QStart < d(p)< QEnd.

A Pseudo-code of NOM is demonstrated in Algorithm 2, Fig. 2.12.
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Algorithm 2 Norm Ordered Matching algorithm (NOM)
Input: data points X = {x1,x2, ...,xm} ∈ RN , query point Q
Output: nearest neigbor point to Q

1: for all data point xi ∈ X do
2: Compute norm d(xi) and store it in an array Norms
3: end for
4: Sort the array Norms according to norm value
5: Compute norm of query point d(Q)
6: Perform binary search over the array Norms using d(Q) as a key, store result in x
7: Let QStart← 0, QEnd← minDist←∞, k←−1
8: for i← data points of indices x,x−1,x+1,x−2,x+2, ... do
9: Id← Norms[i]

10: if Id < QStart then
11: Skip all i < Id
12: end if
13: if Id > QEnd then
14: Skip all i > Id
15: end if
16: dist← Norm(Q− i)
17: if dist < minDist then
18: minDist← dist
19: QStart← d(Q)−min
20: QEnd← d(Q)+min
21: k← index of data point i in X
22: end if
23: end for

Fig. 2.12: Norm Ordered Matching (NOM)
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CHAPTER THREE

MULTI-BIN SEARCH

At first, it would be suitable to provide a formal definition for the problem of CBIR. Then,

the approximated search process based on hashing methods is clarified. Then, a Single-Bin

search method, based on exhaustive-search equivalent methods is presented, that greatly

increases speedup. After that, the Multi-Bin search method is presented in detail. Finally,

a result reranking step that increases search precision is discussed.

3.1 Formal Definitions

Given a set S of images

S = {i1, i2, .., im} (3.1)

consisting of m images and a query image q, it is required to find a set R of k images,

R = {i1, i2, .., ik} where R⊂ S, k << m (3.2)

that contains the most similar k images for q in S. It is meant by similar images those

containing a visually-similar scene or object with variations in illumination, viewpoint,

scale, rotation, distortion, noise, etc.
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In order to tell that two images are visually-similar, firstly, a way is needed to digitally

describe the visual contents of these images. This is the task of image descriptors men-

tioned previously in Chapter 2 such as SIFT, SURF, BRIEF, BRISK, ORB, or FREAK.

Image descriptors are no more than vectors of numbers describing specific regions of an

image, as reviewed also in Chapter 2. So, an image I can be defined as a set of n vectors

representing image descriptors:

I = {v1,v2, ..,vn} (3.3)

This makes S can be replaced by:

S′ = {{v1,v2, ..,vn1}1,{v1,v2, ..,vn2}2, ..,{v1,v2, ..,vnm}m} (3.4)

For simplicity, S′ can be replaced by:

S′′ = {v11,v12, ..,v1n1,v21,v22, ..,v2n2 , ..,vm1,vm2, ..,vmnm} (3.5)

3.2 Approximate Search with Binary Hashing

In large-scale image retrieval, the set of images S usually consists of thousands or millions

of images. Knowing that each image usually consists of a few hundreds or a few thousands

of descriptors, the total number of descriptors grows to the order of billions. In this work,

hashing or quantization methods are used to approximate the search process.

Any binary hashing method can be defined as follows: given a set of data vectors as

shown in Equation 3.5, each data vector vi is represented by a binary code bi as

bi = {0,1}l (3.6)
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where l is the length of the binary code. In order to make this mapping from data vectors

to binary codes, a set of l hashing functions is required

H(v) = (h1(v),h2(v), ..,hl(v)) (3.7)

Each hash function generates a single bit in the binary code, 0 or 1, based on specific

criteria defined by the function itself. The goal of the hashing functions is to generate the

same binary code for the approximate nearest neighbor vectors.

After applying the hashing algorithm, the data vectors can be divided into a set G of

bins or buckets

G = {W1,W2, ..,Wnw} (3.8)

each bin contains the vectors with the same binary code. The maximum number of bins

would be 2l , i.e., nw ≤ 2l .

The approximation here is to consider all the data vectors in a single bin as approximate

nearest neighbors, i.e., matches to each other. So, the set of nearest neighbor vectors to a

query vector x found inside a bin W is

NN(x) = {y|y ∈W,x ∈W} (3.9)

Of course, the precision here depends on the algorithm used for hashing and the length

of the generated binary code. It is clear that increasing the binary code length increases the

precision.

After the hashing algorithm is applied and the binary codes are generated, it is time to

index all data vectors inside one or more hash tables using the binary codes as table keys.

When a query vector is submitted, its binary code is computed and used to directly

access the target bin in the hash table. A step further beyond this is to search all vectors

inside the target bin for the nearest neighbor vectors within a distance threshold tv, as shown
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Algorithm 3 Searching a target bin for the nearest neighbors of a query vector using brute-
force matching
Input: a query vector x, the target bin Wi where x ∈Wi, and a distance threshold tv
Output: a set NN(x) containing the nearest neighbor vectors of the query vector x within

the distance threshold tv
1: for all y|y ∈Wj do
2: if dH(x,y)< tv then
3: Add y to the set NN(x)
4: end if
5: end for

Fig. 3.1: Searching a target bin for the nearest neighbors of a query vector using brute-force
matching.

in Algorithm 3, Fig. 3.1. Of course, exhaustive or brute-force search would be very time

consuming. In the next section, a first step toward solving this problem is presented.

3.3 Single-Bin Exhaustive-Equivalent Search (SBEES)

Exhaustively searching a target bin would be very time consuming due to the large number

of vectors inside a single bin, even if the distance measure used to match vectors is very

fast like the Hamming distance. So, up to now, the problem with approximate search is the

time cost of searching for near neighbor vectors inside a target bin.

To solve this problem, an exhaustive-search equivalent algorithm is proposed inspired

by NOM, discussed earlier in Section 2.3, has been used. Exhaustive-search equivalent

algorithms yields same results as exact exhaustive-search algorithms with significant

speedup. In the proposed algorithm, which is shown in Algorithm 4, Fig. 3.2, the popu-

lation count, i.e. the number of ones in the binary string, is pre-computed offline for all

vectors. The algorithm computes lower and upper bounds of population count that ensure

a vector may result in a distance less than the threshold. If a vector’s population count is

outside these bounds, it is assured that it will result in a distance greater than the threshold,

so it is skipped. As a result, the distance computation are skipped for a large number of
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Algorithm 4 Searching a target bin for the nearest neighbors of a query vector using norm
matching
Input: a query vector x, the target bin Wi where x ∈Wi , a set of population counts of

vectors inside the bin Pi = {py|y ∈Wi}, and a distance threshold tv
Output: a set NN(x) containing the nearest neighbor vectors of the query vector x within

the distance threshold tv
1: px← POPCNT (x) . compute number of 1 bits in x
2: lowerBound← px− tv
3: upperBound← px + tv
4: for all y|y ∈Wj do
5: if lowerBound ≤ py ≤ upperBound then
6: if dH(x,y)< tv then
7: Add y to the set NN(x)
8: end if
9: end if

10: end for

Fig. 3.2: Searching a target bin for the nearest neighbors of a query vector using NOM

the vectors inside the bin. This algorithm is different from NOM in some steps, there is no

sorting of norm values and there is no change of the upper and lower bounds. The sorting

step was skipped because, in the case of binary vectors, it adds much processing overhead

while skipping a small group of vectors. The upper and lower bounds are not updated

because the goal of this algorithm is to find the near neighbor vectors within a constant

distance threshold tv, not the exact nearest neighbor vector as in NOM.

3.4 Multi-Bin Exhaustive-Equivalent Search (MBEES)

Quantization errors are the major problem facing quantization, clustering, and hashing

methods. A query descriptor may fall on the edge of a cluster or generate a hash code

that is different from its neighbors’ hash codes resulting in retrieving wrong results, i.e.

false positives, as shown in Fig. 3.3. The proposed approach aims to minimize these quan-

tization errors; instead of only examining the single bin or cluster that contains the query

descriptor, the surrounding bins or clusters are also examined in order to minimize quanti-
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Fig. 3.3: Left: A query point q and its nearest neighbor p inside the same bin or cluster.
Right: A query point q and its nearest neighbor p inside a different bin or cluster.

Fig. 3.4: Left: In Single-Bin search, only the targeted bin is searched for approximate near-
est neighbor points (the colored area). Right: In Multi-Bin search, in addition to the tar-
geted bin, nearest neighbor bins are also searched for approximate nearest neighbor points
(the colored area).

zation errors, as shown in Fig. 3.4. Of course, examining more data will increase the search

time, but the search accuracy would be greatly increased.

To minimize these quantization errors, for each bin Wi, Its nearest nwi bins are pre-

computed and stored, as shown in Algorithm 5, Fig. 3.5. These nearest bins are selected

based on some distance threshold tw, which is empirically chosen, where the distance be-

tween two bins d(W1,W2) is computed as the distance between their centers, i.e., their

average vector. This distance threshold is, of course, dependable on the binary code length.

So, the set containing the indices of the nearest bins to some other bin wi is

NN(Wi) = { j|d(Wi,Wj)≤ tw} (3.10)
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Algorithm 5 Computing nearest neighbor bins for each bin
Input: bin centers C = {c1,c2, ..,cnw} of bins G = {W1,W2, ..,Wnw}, inter-bin distance

threshold tw
Output: a set containing the nearest neighbor bins for each bin P =
{NN(W1),NN(W2), ..,NN(Wnw)} where NN(Wi) = { j|d(Wi,Wj)≤ tw}

1: for i = 1 to nw do
2: Add i to the set NN(Wi)
3: for j = i+1 to nw do
4: if d(ci,c j)≤ tw then
5: Add j to the set NN(Wi)
6: Add i to the set NN(Wj)
7: end if
8: end for
9: end for

Fig. 3.5: Computing nearest neighbor bins for each bin

And a bin center ci for some bin wi with ni vectors is

ci =
∑

ni
1 xi

ni
(3.11)

Of course, the computation of nearest neighbor bins is done offline as a pre-processing

step. After computing these nearest bins, they are searched, in addition to the target bin, for

the nearest neighbors of the query vector x as shown in Algorithm 6, Fig. 3.6. Only vectors

within a distance threshold tv, which is impirically chosen, are considered near neighbors

to x.

A remaining issue with the proposed approach is how to tell that an image in the dataset

is a match for a query image depending on matching individual descriptors of the query

image. To resolve this issue, an algorithm is used to tell a percentage of matching between

a query image and the candidate images in the dataset. For each query image descriptor, if

an approximate nearest neighbor is found, one point is added to the score of the image to

which it belongs. At the end, these scores are normalized by dividing each image’s score

by the sum of descriptors in the image itself and the query image. The images are sorted in
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Algorithm 6 Searching nearest neighbor bins for a query vector
Input: query vector x, a set containing the indices of the nearest neighbor bins NN(Wi)

where x ∈Wi, and a distance threshold tv
Output: a set NN(x) containing the nearest neighbor vectors of the query vector

1: px← POPCNT (x)
2: lowerBound← px− tv
3: upperBound← px + tv
4: for all j| j ∈ NN(Wi) do
5: for all y|y ∈Wj do
6: if lowerBound ≤ py ≤ upperBound then
7: if dH(x,y)≤ tv then
8: Add y to the set NN(x)
9: end if

10: end if
11: end for
12: end for

Fig. 3.6: Searching nearest neighbor bins for a query vector

descending order by their scores and the top k results are picked. This method is shown in

Algorithm 7, Fig. 3.7.

A major factor that significantly increases the precision of the resulting score of match-

ing a pair of images is the actual distance between pairs of local descriptors. Of course,

the shorter the distance between two descriptors is, the more similar they become. In other

words, the similarity score between two descriptors is inversely proportional to the distance

between them. So, it would be more precise to replace line 8 in Algorithm 7, Fig. 3.7 by

simgIndex← simgIndex +(
1

d(vi,y)
). (3.12)

3.5 Re-ranking Results

Exhaustive image matching would not be time-costing if there are few image to match, and

it should produce more accurate results than approximated matching techniques. So, in this
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Algorithm 7 Computing image scores
Input: a set of images S = {I1, I2, .., Im}, a set NN(Ii) = {NN(v1),NN(v2), ..,NN(vni) con-

taining the sets of the approximate nearest neighbors of each descriptor vector in the
query image Ii, and number of top matched images k

Output: a set of the top k matched images R = {I1, I2, .., Ik}
1: Let Scores = {s1,s2, ..,sm}
2: for k = 1 to m do
3: sk← 0
4: end for
5: for i = 1 to ni do
6: for all y|y ∈ NN(vi) do
7: imgIndex← j|y ∈ I j
8: simgIndex← simgIndex +1
9: end for

10: end for
11: Sort Scores descending
12: R← first k elements in Scores

Fig. 3.7: Computing image scores

section, a results reranking method is presented that is based on the exhaustive matching of

images.

In the reranking method, the top k retrieved images are exhaustively re-matched with

the query image. This method depends on approximating the exhaustive matching of a pair

of images. Exhaustively matching a pair of images, say I1 and I2, using their individual

descriptors requires finding the exact nearest neighbor of each descriptor in I1 from all

descriptors in I2 and vice versa. This is a time consuming method, so it is better to approxi-

mate it by using some distance threshold t and searching for the first descriptor in I2 which

is at distance d ≤ t from each descriptor in I1. Once a match descriptor found, the rest is

skipped.

This algorithm does not go backward, it only matches the descriptors from one image

to the other. This method is shown in Algorithm 8, Fig. 3.8. This algorithm also benefits

from the NOM algorithm, discussed earlier in the text, in speeding the search for matched

descriptors. The results will show that this approximated reranking method highly in-
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Algorithm 8 Approximated matching algorithm for matching a pair of images
Input: two sets of image descriptor vectors I1 = {v11,v12, ..,v1n} , I2 = {v21,v22, ..,v2m}

where n ≥ m, their corresponding population counts P1 = {p11, p12, .., p1n},P2 =
{p21, p22, .., p2m}, and a distance threshold tv

Output: a score s representing the matching percentage between I1 and I2
1: s← 0
2: for i = 1 to n do
3: lowerBound← p1i− tv
4: upperBound← p1i + tv
5: for j = 1 to m do
6: if lowerBound ≤ p2 j ≤ upperBound then
7: if dH(v1i,v2 j)≤ tv then
8: s← s+1
9: end if

10: end if
11: end for
12: end for
13: s← s/(n+m)

Fig. 3.8: Approximated matching algorithm for matching a pair of images

creases retrieval precision while costing constant and small amount of time per single

query.

41



CHAPTER FOUR

EXPERIMENTAL RESULTS

This chapter presents the evaluation protocol of the proposed approach and the benchmark-

ing dataset. Then, experimental evaluation results are presented and discussed thoroughly.

4.1 Evaluation Protocol

The proposed approach has been evaluated against three famous datasets:

• The University of Kentucky Benchmarking (UKB) [13]: consists of 10200 images

grouped into 2550 categories, each category contains four images that are considered

matches to each other. Given a query image, it is required to get the image itself and

the other three images in the same category as the top four results. So, the precision

measure is a floating-point score in the range from 0 to 4 representing the number

of retrieved correct matches in the top four results averaged over the number of run

queries. The first 5 categories of the UKB are shown in Fig. 4.1.

• The INRIA Holidays [37]: a collection of 1491 holiday images, 500 of them being

used as queries. The dataset includes a very large variety of scene types (natural,

man-made, water and fire effects, etc) and images are in high resolution. The accu-

racy is measured by the mean Average Precision (mAP) as defined in [38].
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Fig. 4.1: The first 5 categories of University of Kentucky Benchmarking (UKB) dataset.

• The MIRFLICKR-1M [39]: a collection consists of one million images downloaded

from the social photography site Flickr through its public API. This dataset is merged

with the other datasets to evaluate the accuracy and efficiency on a large scale.

The proposed methods have been applied on the famous binary hashing methods, LSH

and SH. For LSH. Another variation of the LSH algorithm is evaluated, that requires to

center the data vectors around the origin vector, i.e. zero-centered, this variation is denoted

LSHZC. BRISK local image descriptors were generated of size 512 bits using a detection

threshold of 70 for the FAST keypoint detector, these parameters showed better recognition

precision as stated in [6]. The proposed methods has been compared to the BoVW approach

using the implementation of [40].

All experiments were run on an Intel R©CoreTMi7-950 processor with 8 MB cache and

3.06 GHz clock speed, and 8 GB memory. An advantage was taken of the newly intro-

duced POPCNT instruction which was introduced with the Nehalem-microarchitecture-

based Core i7 processors. This instruction efficiently computes the population count of

binary strings. POPCNT has been used in measuring Hamming distances between bins or

vectors and in the offline pre-computing of the population counts for all bins and vectors.
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Table 4.1: Distance thresholds used in computing nearest neighbor bins for each binary
code length

Binary code length

12 16 20 24 28 32 36 40

Distance threshold (decimal) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Distance threshold (quantized) 2 2 3 3 4 4 5 5

In all experiments, all the 10200 images of UKB and the 500 queries of INRIA Holidays

were run as queries and the average score or precision was computed. Hashing methods

were tested with binary code lengths ranging from 12 to 40. For Multi-bin search, inter-bin

distance thresholds were given values as a percent of the binary code lengths, a percent of

0.125 was picked, i.e. 1 bit for each 8 bits in the binary code. This threshold empirically

showed the best trade-off between search time and accuracy. Threshold values for different

binary code lengths are shown in Table 4.1. In the reranking step, only the top 50 results

were reranked to make a trade-off between accuracy and time. For large-scale evaluation,

the UKB dataset was merged with various portions of the MIRFLICKR-1M.

All evaluated methods were denoted as follows:

• BoVW: Bag of Visual Words.

• SH: Spherical Hashing.

• LSH: Locality Sensitive Hashing.

• LSHZC: Locality Sensitive Hashing with Zero-Centered vectors.

• SBEES: Applying the Single-Bin Exhaustive Equivalent Search on some hashing

method.

• MBEES: Applying the Multi-Bin Exhaustive Equivalent Search on some hashing

method.

• R: Applying a Reranking step.

44



12 16 20 24 28 32 36 40

0

0.5

1

1.5

2

Binary code length (bits)

U
K

B
sc

or
e

(o
ut

of
4)

SH LSH

LSHZC SH-SBEES

LSH-SBEES LSHZC-SBEES

Fig. 4.2: Comparison of retrieval precision (UKB score) between hashing methods before
and after applying the Single-Bin Exhaustive Equivalent Search.

4.2 Single-Bin Exhaustive-Equivalent Search (SBEES)

Figure 4.2 shows the scores of the evaluated methods SH, LSH, and LSHZC, along with the

improvement in score resulting from applying the Single-Bin Exhaustive Equivalent Search

(SBEES). It is shown that SBEES improves the retrieval precision (UKB score) of all eval-

uated methods by various amounts depending on binary code length. For instance, with

binary code length 24, SBEES improves the retrieval precision of SH, LSH, and LSHZC

by 46.24%, 73.46%, and 23.77% respectively.

Table 4.2 shows average query times over 10200 queries for SH, LSH, and LSHZC

before and after applying SBEES. Of course, original hashing methods SH and LSHZC,

especially with larger binary code lengths, have the shortest query times but with very low

precision values as shown in Fig. 4.2. The LSH and LSH-SBEES query times are too

long compared to other methods, this is due to the large sizes of bins generated by LSH.

This is shown in Fig. 4.3, the total number of bins generated by each hashing method for
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Fig. 4.3: Total number of bins generated by each hashing method.
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Fig. 4.4: Average number of nearest neighbor bins for each bin generated by each hashing
method.

various binary code lengths. It is clear that LSH generates the smallest number of bins.

This yields larger bins that require more time to examine. LSHZC-SBEES has the shortest

times among all SBEES methods taking only 165 microseconds with binary code length of

24 bits.
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Table 4.2: Average query times of SBEES compared to original hashing methods (milliseconds)

Search methods
Binary code length

12 16 20 24 28 32 36 40

SH 7.753 1.603 0.330 0.188 0.095 0.063 0.048 0.044

LSH 154.024 119.785 44.162 3.869 2.248 0.331 0.385 0.094

LSHZC 5.979 0.770 0.222 0.070 0.045 0.093 0.040 0.038

SH-SBEES 85.644 17.257 2.875 1.324 0.527 0.314 0.148 0.118

LSH-SBEES 3065.790 2125.170 586.660 35.178 20.531 2.127 2.980 0.381

LSHZC-SBEES 55.656 5.723 1.230 0.165 0.136 0.055 0.059 0.113
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Fig. 4.5: Comparison of retrieval precision (UKB score) between hashing methods before
and after applying the Single-Bin Exhaustive Equivalent Search (SBEES) and the Multi-
Bin Exhaustive Equivalent Search (MBEES).

4.3 Multi-Bin Exhaustive-Equivalent Search (MBEES)

Figure 4.5 shows the scores of the evaluated methods SH, LSH and LSHZC, and the im-

provement in score resulting from applying SBEES and the Multi-Bin Exhaustive Equiv-

alent Search. It is shown that MBEES improves the retrieval precision (UKB score) of all

evaluated methods. For instance, with binary code length 24, MBEES improves the re-

trieval precision of SH, LSH, and LSHZC by 104.32%, 125.77%, and 85.64% respectively.

It is noticed in Fig. 4.2 and Fig. 4.5 that increasing the binary code length beyond

specific values results in decreasing the retrieval precision, this is due to the increasing

number of generated bins from the hashing algorithm, as shown in Fig. 4.3, which results

in smaller bins. Smaller bins means less data to search in each bin, therefore, the precision

decreases.
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Table 4.3 shows average query times over 10200 queries for SH, LSH, and LSHZC

before and after applying SBEES and MBEES. LSHZC-MBEES has the shortest times

among all MBEES methods taking 86.607 milliseconds with binary code length of 24 bits.

Table 4.4 shows the retrieval precision (measured in mAP) and average query times

(measured in milliseconds) of the proposed methods SBEES and MBEES compared to the

BoVW method over the Holidays dataset. It is shown that the proposed methods mostly

exceeds the BoVW in precision and time.

Figure 4.6 shows a comparison of the Recall@R (averaged over 500 queries) between

SBEES, MBEES methods (using 24 bits) and BoVW (with two different vocabulary sizes)

over the Holidays dataset. It is shown that SBEES and MBEES achieves higher recalls

sooner than BoVW.
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Table 4.3: Average query times of MBEES compared to original hashing methods and SBEES (milliseconds)

Search methods
Binary code length

12 16 20 24 28 32 36 40

SH 7.753 1.603 0.330 0.188 0.095 0.063 0.048 0.044

LSH 154.024 119.785 44.162 3.869 2.248 0.331 0.385 0.094

LSHZC 5.979 0.770 0.222 0.070 0.045 0.093 0.040 0.038

SH-SBEES 85.644 17.257 2.875 1.324 0.527 0.314 0.148 0.118

LSH-SBEES 3065.790 2125.170 586.660 35.178 20.531 2.127 2.980 0.381

LSHZC-SBEES 55.656 5.723 1.230 0.165 0.136 0.055 0.059 0.113

SH-MBEES 691.121 698.419 150.290 221.746 85.964 135.536 48.338 180.063

LSH-MBEES 14823.000 29605.400 13876.500 5668.350 3949.980 3035.400 3008.120 8978.240

LSHZC-MBEES 538.413 401.179 96.911 86.607 21.601 12.317 2.705 1.556
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Fig. 4.6: Comparison of Recall@R (averaged over 500 queries) between SBEES, MBEES
methods (using 24 bits) and BoVW over the Holidays dataset.

Table 4.4: Retrieval precision (mAP) and average query times (milliseconds) of the pro-
posed methods compared to the BoVW method over the Holidays dataset.

Search methods Retrieval precision (mAP) Average query times (milliseconds)

BoVW (K=6, L=3) (K=10, L=3) (K=6, L=3) (K=10, L=3)

20.5045 34.534 23.9736 62.345

(BCL=16) (BCL=20) (BCL=24) (BCL=16) (BCL=20) (BCL=24)

SH-SBEES 31.840 37.095 35.515 1.766 0.484 0.201

LSH-SBEES 41.662 36.439 30.906 188.736 15.489 1.498

LSHZC-SBEES 35.364 33.422 29.233 0.906 0.167 0.077

SH-MBEES 38.209 41.973 42.308 79.178 22.177 33.793

LSH-MBEES 42.780 39.172 37.784 2609.070 538.968 339.850

LSHZC-MBEES 40.188 41.899 39.707 55.850 9.557 12.134

4.4 Re-ranking Results

Figure 4.7 shows a comparison of retrieval precision (UKB score) between MBEES before

and after applying the reranking step. It shows that the reranking step adds some precision

to all MBEES methods by about 10% with increasing in query time by around 50 millisec-
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onds. The average query times of MBEES before and after applying the reranking step is

shown in Table 4.5 and plotted for SH-MBEES and LSHZC-MBEES in Fig. 4.8.

Figure 4.9 shows the top four results of the first four distinct query images as found in

the UKB dataset. Original LSH exceeded other original hashing methods in the first two

queries due to its larger bins. Multi-Bin search improved the results of all queries except the

third one. This is due to the complexity of the image’s visual structure. The reranking step

improved SH and LSHZC by retrieving another true positive result, i.e., another correct

match.

Scalability Evaluation. Figure 4.10 reveals the scalability of the proposed methods ap-

plied on SH by showing the UKB scores of the proposed methods over various sizes of

the MIRFLICKR-1M dataset merged with the UKB dataset. The labels on the data points

represents the average query times in milliseconds. In this experiment, the number of de-

scriptors per image was restricted to 50 descriptors/image, the most responsive descriptors

were picked.

Figure 4.11 shows the speedup improvement introduced by the POPCNT instruction,

mentioned previously, for the MBEES with SH and LSHZC. Speedup percentages are writ-

ten over each binary code length. Of course this is not exactly the same speedup intro-

duced only by POPCNT as there are many other computations that are not dependable on

POPCNT.

Figure 4.12 shows the operation of the Web application which was built based on the

implementation of the proposed methods. The Web application demonstrated the effective-

ness of the proposed methods for real-time and real-world applications.
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Fig. 4.7: Comparison of retrieval precision (UKB score) between MBEES before and after
applying the re-ranking step.
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Fig. 4.8: Average query times before and after applying the reranking step on SH-MBEES
and LSHZC-MBEES.
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Table 4.5: Average query times of MBEES before and after applying the reranking step (milliseconds)

Search methods
Binary code length

12 16 20 24 28 32 36 40

SH-MBEES 691.121 698.419 150.290 221.746 85.964 135.536 48.338 180.063

LSH-MBEES 14823.000 29605.400 13876.500 5668.350 3949.980 3035.400 3008.120 8978.240

LSHZC-MBEES 538.413 401.179 96.911 86.607 21.601 12.317 2.705 1.556

SH-MBEES-R 738.969 745.868 196.933 268.293 131.5405 181.067 94.9854 227.83

LSH-MBEES-R 14873.660 29652.835 13924.115 5716.859 3999.084 3084.144 3294.375 9025.181

LSHZC-MBEES-R 587.607 451.363 146.307 134.680 68.847 60.160 48.852 83.299
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Fig. 4.9: Top four results of the first four distinct image queries as they appear in the UKB dataset.
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Fig. 4.12: Web application based on the implementation of the proposed methods.
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CHAPTER FIVE

CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

In this work, a large-scale image retrieval method has been proposed which is based on bi-

nary hashing methods and binary local image descriptors. In this method, not only a target

bin or bucket is searched, but also the nearest neighbor bins to a target bin are searched. The

nearest neighbor bins are precomputed, then an exhaustive-search equivalent algorithm is

used to examine those bins. The proposed approach can be applied to any hashing or clus-

tering method in order to increase precision. The proposed approach has been applied on

some hashing methods like Spherical Hashing and LSH, the evaluations showed significant

improvement in retrieval precision over the original hashing methods.

In addition to comparisons with binary hashing methods, other comparisons with meth-

ods that are not depending on either binary hashing or binary descriptors have been carried

out. These comparisons further evaluate and approve the effectiveness of the proposed

approach.

To experiment the proposed approach in a real-world applications, an image search Web

application was built based on the implementation of proposed methods. The operation of

the Web application demonstrated the effectiveness of the proposed approach for real-world

applications.
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5.2 Future Works

Future work depending on the proposed approach can go on according to many aspects

including the following:

• It would be convenient to evaluate the proposed approach on many other hashing and

clustering methods.

• Some better exhaustive-search equivalent algorithms can be used for examining tar-

get bins.

• Many new binary image descriptors worth evaluation using the proposed approach,

examples of these descriptors are FREAK and ORB.

• For more scalability assurance, it would be convenient to evaluate the proposed ap-

proach using other large-scale database.
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 الملخص العربى

جَاع  عنوان الرسالة:  ْ ى  الاسْتِر وَرر  الْآنر حْتَوَىلر  اق  بْ طر  لرلصى ع   نرطَاق   علََ  لمْ   وَاسر

فى الآونا  استِجاع الصور بناا  عال اوتاوى عال نطااق واساع ياًاتم  اوا  ها   وا تا  

ان الأخيرة  بالعويو  ن الطرق الواعوة. في هذه الرسالة، يتم تقويم طريق  جوياوة والاتح  ن 

لاساتِجاع الصاور بناا  عال اوتاوى عال  والوقا  المناغتقرق بشكل  شتِك دق  البحث

الًنائ ا ،  لاتم عان طريا  اساغتمواا واتاااص الصاور اول ا  ويتحقا  هاذا . نطاق واساع

BRIEF  وأأBRISK واسغتمواا طرق التجزئا  الًنائ ا ،  لاتم التجزئا  اةناسا  للما ن ،

(LSH. والتجزئ  الكروي ) 

 

نن دقا     ،(Multi-Bin Search)  تعود اةاواص لبحثة بانمالم ، وا المقتِح طريق ال

 وتخازنن وهررسا  حناا   ن خال  ين. ويتم هذا التحنالاستِجاع لطرق التجزئ  الًنائ  

عمل اا  وفى .  ًنائ ااال تجزئاا  ال  طاارقالمتااو ة  اان  اةاااواصرة لااكل و االاا اةاااواصأأقاار  

 فى أأقاار  أأيضااايااتم البحااث المنااغفوه ، ولكاان فى اةاوياا  البحااث لا يااتم البحااث هقاا  

 .اةاواص الاورة

 

    هئا  سريعاتم اسغتمواا خوارز ي  المنغفوه ، اةاواص بحث بكاا ة داختم ال  ن أأجتم 

ثبا   التح( و NOM) المعايير المرتب  طابق  نتنو هذا الخوارز ي  عل ت شا تم. و للبحث ال 

. ع كبايرـياتس  اع  شا تمالبحث ال  ن نتائج  أأو قريب  جوا   طابق  تنار عن نتائج  اأأنه  ؤخرا  

ضاهي  لاإعادة ترتيب النتائج والتح تأأيضا،  ستِجاع ، ولكان الازيو  ن دق  يتم تقويم خطوة اإ

  ع زادة طايا  في وق  البحث.

 

الصور لطرق  استِجاعدق  نن ثًيرا  ن    المقتِح  الطرقتظرر التقييماص التجريبي  أأن 

جرا   أأيضا، .التجزئ  الًنائ   اةويً   هعال   تقييم ع بعض الطرق اةويً  ل   قارناصتم اإ

 واتااص أأو الًنائ   تجزئ  ن ال  أأي عل تعتمو لا التح ه   قارنفا الطرق. المقتِح  الطرق

 التطب قاص في  المقتِح الطرق تجرب  أأجتم  نو  ذلك، اإلى بالاإضاه .  ًنائ الصور ال 



وقو أأظرر .  المقتِحالطرق  أأساس عل الصورويب للبحث فى  تطب   تم بنا  ،الواقع  

آن ا. التطب قاص في  المقتِح الطرق هعال   التطب   تشق تم  الواقع   وتلك التح تتطلب بحًا أ

 :التالي النحو علخمن  هصو   الرسالة هذه تتضمن

وبعاض تقن اتا   اساتِجاع الصاور بناا  عال اوتاوى مجاا يعطى  قو ا  عان  الأو  الاصتم

 وتطب قات .

 تم الاياةويًا   والخوارز يااص الطارق بعاض عان  اصاال اسغتعراضاا يعطي الًان الاصتم

 والخوارز يااص الأساال ب عال رثازن، و استِجاع الصور بنا  عل اوتاوى مجا  في اقتِاحها

 .رسالةال ههذ  فى المقتِح طريق ال بنا   فى نغتمو الم 

والمناماة بالبحااث  ،رساالةال ههاذ  فى المقتِحا للطريقاا   اصاال اشرحا يقاوا الًالاث الاصاتم

  .ضعانقاط و   زااه ويناقش ،(Multi-Bin Search تعود اةاواص )

 الأخارى  و بعض الطرق المقتِح الطريق  بين قارناص و  تاص ل   تقييماص يقوا الرابع الاصتم

 .اةويً 

 ناغتقلاال  ضااهفااإ المقاتِ    عاماوالأ  الرساالة هاذه فى المنجاز العمتميلخص  الخا س الاصتم

 .العمتم هذا اإلى استنادا



  
 

قًاْرْ وْ لصْ ل ْْىْ نْ ال ْْاعْ جْ رْ تْ الاسْ  ْىوْ ت ْ حْ مْ لْ ل ْْط ب  
ْعْ اسْ وْ ْاقْ طْ ىْنْ لْ عْ 

 

ْيدْ مْ حْ دْالْ بْ يقْعْ دْ لْصْ امْ كْ ْنْْ مْ حْ دْالرْ بْ عْ 
 9002وط ي  س  أ   ة  ع  ام  ج   –( ب  اس  ال    وم  ل  )ع   ات  وم  ل  المع  و   ات  ب  اس  ال    وس  ي  ور  ال  ك  ب  

 

 ل  إ   ة  م  د  ق  م   ة  ال  س  ر  
 وطي  س  أ   ة  ع  ام  ج   – ات  وم  ل  المع  و   ات  ب  اس  ال    ة  ي  ل  ك    – ب  اس  ال    وم  ل  ع   م  س  ق  

 ة  ج  ر  ى د  ل  ع   ول  ص  ال    ات  ب  ل  ط  ت  م   اء  يف  ت  س  ل  
ب اتْ ىْيرْفْ تْ سْ اجْ مْ الْ  بْ ْع ل ومْ )ْو المع ل وم اتْ ْال ح اس   (ال ح اس 

 

 اف  ر  ش  ال    ة  ن  ل   
 ىد  ه   م  ون  ي  س  ب   ف  وس  أ.د. ي  

 ي  س  ى ح  ح  ت  ف    د  ال  د. خ  

 ة  ش  اق  المن  و  م  ك  ال  ل  ن ة  
 د    م  د م       ي  ة س  ام  س  أ   أ.د.
 د      م  ن م   س   ح  ن  غ  ر  م   أ.د.

د ى  ي ون  م ه   أ.د. ي وس ف  ب س 
ى   ح س ي  د. خ ال د  ف  ت ح 

 
ب   ع ل وم   ق س م ب ات   ك ل ي ة – ال  اس   و المع ل وم ات   ال  اس 
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