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Abstract The challenge of large-scale content-based image
retrieval (CBIR) has been recently addressed by many
promising approaches. In this work, a new approach that
jointly optimizes the search precision and time for large-
scale CBIR is presented. This is achieved using binary local
image descriptors, such as BRIEF or BRISK, along with
binary hashing methods, such as Locality-Sensitive Hash-
ing and Spherical Hashing (SH). The proposed approach,
named Multi-Bin Search, improves the retrieval precision
of binary hashing methods through computing, storing and
indexing the nearest neighbor bins for each bin generated
from a binary hashing method. Then, the search process
does not only search the targeted bin, but also it searches the
nearest neighbor bins. To efficiently search inside targeted
bins, a fast exhaustive-search equivalent algorithm, inspired
by Norm Ordered Matching, has been used. Also, a result
reranking step that increases the retrieval precision is intro-
duced, but with a slight increase in search time. Experimental
evaluations over famous benchmarking datasets (such as the
University of Kentucky Benchmarking, the INRIA Holidays,
and the MIRFLICKR-1M) show that the proposed approach
highly improves the retrieval precision of the state-of-art
binary hashing methods.

Part of this work was published in the proceedings of the 2013 IEEE
20th International Conference on Image Processing (ICIP) [17].
Source code of the proposed work can be downloaded from [11].
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1 Introduction

Image similarity search has been intensively addressed
recently. This is due to its importance to many machine
learning and computer vision applications. Such applica-
tions include object recognition [21], finding partial image
duplicates on the web [28], searching individual video
frames [26], image classification [30], robot localization [3],
and medical imagery [13]. This work focuses on content-
based image retrieval in which a large dataset of images is
searched for the most similar images for a query image, it
does not focus on specific object recognition or semantic
queries.

Searching large-scale image datasets using brute-force
matching is not a practical task. This is due to many reasons
including:

– The large number of images in the dataset.
– The high dimensionality of image descriptors which usu-

ally consist of tens or hundreds of dimensions per descrip-
tor.

– The method used for matching pairs of images.
– The complexity of the distance measure used to match

descriptors, which is a major factor in speeding up the
retrieval process and increasing the retrieval precision.

Most state-of-art large-scale image retrieval approaches
use SIFT [20] feature descriptors to represent images. The
SIFT descriptor has a very high discriminative power. Its
drawback is the high dimensionality where a single descrip-
tor consists of 128 dimensions. To decrease descriptors’
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dimensionality, many binary descriptors have been proposed
[1,4,5,18,25]. Binary descriptors are small and very fast to
generate. In this work, binary descriptors are used to achieve
better speedup.

To face the curse of dimensionality, many methods have
been developed based on approximating the search process
which is known as approximate nearest neighbor (ANN)
search. Some approaches use the Bag of Visual Words or
Bag of Features (BoVW or BoF) method [26] to repre-
sent images with vectors of unified dimensionality to avoid
matching single descriptors inside every image. Another
approach, the Vocabulary Tree [21], uses clustering algo-
rithms, such as k-means, along with efficient indexing
data structures to quantize descriptors and approximate the
retrieval process.

Some improvements to the BoF approach are the Ham-
ming embedding (HE) and weak geometric consistency con-
straints (WGC) introduced in [15,16]. HE introduces a more
precise representation by providing binary signatures that
refine the matching based on visual words, and WGC con-
straints filter matching descriptors that are not consistent
in terms of angle and scale. Another major improvement
to the BoF approach is the soft assignment approach [23],
which explores techniques to map each visual region to
a weighted set of words, allowing the inclusion of fea-
tures which were lost in the quantization stage of previ-
ous systems. It generates a single descriptor for each patch
as usual, but then associates that descriptor with a set of
nearby clusters instead of its single nearest-neighbor clus-
ter.

Recent approaches, such as Locality-Sensitive Hashing
(LSH) [6], Spectral Hashing [27], and Spherical Hashing
[10], use hashing algorithms to encode local image descrip-
tors. These algorithms aim at encoding near neighbor image
descriptors into the same binary codes. The generated binary
codes, which have lower dimensionality than the origi-
nal descriptors, are used to index the original descriptors
into hash tables. These hash tables greatly speed up the
retrieval process. In this work, some recent hashing algo-
rithms are used to solve the problem of high dimensional-
ity.

Quantization errors are the major problem facing quanti-
zation, clustering, and hashing methods. A query descrip-
tor may fall on the edge of a cluster or generate a hash
code that is different from its neighbors’ hash codes result-
ing in retrieving wrong results, i.e., false positives. To solve
these quantization errors, a simple and intuitive approach
is proposed, in which, instead of only examining the single
bin or cluster that contains the query descriptor, the nearest
neighbor bins or clusters are examined to minimize quanti-
zation errors. Of course, examining more data will increase
the search time, but the search accuracy would be greatly
increased.

2 Related work

In this section, the work related to the proposed approach is
presented starting by binary descriptors, followed by binary
hashing methods, then the fast exhaustive-equivalent search
algorithms.

2.1 Binary descriptors

Recent approaches to image representation favor binary
descriptors such as BRISK [18], BRIEF [4], BFROST [5],
ORB [25], and FREAK [1] over other high-dimensional ones
such as SIFT [20] and SURF [2], this is due to their small
size and fast generation. Also, the popular Hamming dis-
tance can be used directly to measure the distance between
pairs of binary descriptors, this is another advantage of binary
descriptors. The Hamming distance dH is simply the number
of different bits in a pair of binary strings, i.e., the number
of ones in the binary string resulting from the bitwise XOR
operation between a pair of binary strings. The number of
ones in a binary string is known as the population count of
the string (popcnt), so we may write the Hamming distance
as:

dH = popcnt(v1 ⊕ v2) (1)

In this work, the BRISK binary descriptor has been used for
representing images. BRISK was proved to provide high dis-
criminative power compared to other binary descriptors and
significantly lower computational cost. The low computa-
tional cost of BRISK is due to its use of a scale-space FAST-
based detector [24] in combination with a fast generation of
the binary descriptor from intensity comparisons retrieved
by dedicated sampling of each keypoint neighborhood.

2.2 Hashing methods

Hashing descriptors into binary codes has been proved to be
efficient for solving ANN search problems. One of the most
famous hashing methods is the LSH [14]. In LSH, descriptors
are projected on a set of random vectors which is randomly
generated from a specific distribution such as Gaussian distri-
bution, as shown in Fig. 1a. Each random vector represents a
hyperplane that works as a hash function. Each hash function
generates a binary bit depending on whether a vector resides
above or below the hyperplane. The total bits resulting from
the hash functions constitutes the binary code. The generated
binary codes may be used to build one or more hash tables or
any other indexing data structure which is used in the search
process.

Another efficient hashing approach is Spherical Hash-
ing (SH) [10], in which all data vectors are projected over
hypersphere-based, instead of hyperplanes, hashing func-
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Fig. 1 Examples of a
two-dimensional binary
projections by LSH. b
Two-dimensional spherical
hashing

tions. Each hash function is represented by a hypersphere
with some center vector and a radius, as shown in Fig. 1b. In
Spherical Hashing, the hash functions are optimized to bal-
ance the partitioning of data and the independency between
them. Unlike LSH, each spherical hash function generates a
binary bit depending on whether a vector resides inside or
outside a hypersphere. Spherical Hashing has been proved
more efficient than most of the state-of-the-art hashing meth-
ods.

In this work, the proposed approach is applied on LSH
and SH as they are considered two of the most effi-
cient hashing methods. Evaluations show that the proposed
approach highly increases the search precision of each
method.

2.3 Fast exhaustive search

One step in the proposed work is to find the descriptors, inside
a target bin, that are nearer to a query descriptor than others.
To do this, a fast algorithm is required to examine all descrip-
tors inside the target bin. Many exhaustive-search equivalent
algorithms were introduced recently. These algorithms yield
the same or too close results to exhaustive-search results with
a significant speedup. Most of these algorithms depend on
examining data points before matching them with a query
point. Examples of these algorithms are Partial Distortion
Elimination (PDE) [19], Projection Kernels (PK) [9], Low-
Resolution Pruning (LRP) [8] and Norm Ordered Matching
(NOM) [29].

NOM and PDE can be used with any metric distance
measure, including the Hamming distance which is used
in this work, where PK and LRP are designed for L2 dis-
tance. In NOM, not all descriptors are examined to find
the nearest ones, but only a group of them based on their
norm values. In this work, an exhaustive-search equivalent
algorithm is proposed for searching inside target bins. This
algorithm is inspired by the norm matching approach of
NOM.

3 Multi-Bin search

At first, it would be suitable to provide a formal defi-
nition for the problem of content-based image retrieval.
Then, the approximated search process based on hashing
methods is explained. Then, a Single-Bin search method,
based on exhaustive-search equivalent methods is pre-
sented, that greatly increases speedup. After that, the Multi-
Bin search method which can be applied on any hashing
or quantization method is presented in detail. Finally, a
result reranking step that increases search precision is dis-
cussed.

3.1 Formal definitions

Given a set S of images S = {i1, i2, . . . , im} consisting of m
images and a query image q, it is required to find a set R of
k images,

R = { j1, j2, . . . , jk} where R ⊂ S, k � m (2)

that contains the most similar k images for q in S. Similar
images are those containing a visually similar scene or object
with variations in illumination, viewpoint, scale, rotation,
distortion, noise, etc.

To tell that two images are visually similar, firstly, a
way is needed to digitally describe the visual contents of
these images. This is the task of image descriptors men-
tioned previously, such as SIFT, SURF, BRIEF, BRISK, ORB
and FREAK. Image descriptors are no more than vectors
of numbers describing specific regions of an image, so an
image I can be defined as a set of n vectors representing
image descriptors: I = {v1, v2, . . . , vn}. Thus, replacing S
by:

S′ = {{v1, . . . , vn1}1, {v1, . . . , vn2}2, . . . , {v1, . . . , vnm }m}
(3)
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For simplicity, S′ can be replaced by:

S′′ = {v11, . . . , v1n1 , v21, . . . , v2n2 , . . . , vm1, . . . , vmnm }
(4)

3.2 Approximate search with binary hashing

In large-scale image retrieval, the set of images S usually
consists of thousands or millions of images. Knowing that
each image usually consists of a few hundreds or a few thou-
sands of descriptors, the total number of descriptors grows
to the order of billions. In this work, hashing or quantization
methods are used to approximate the search process.

Any binary hashing method can be defined as follows:
given a set of vectors as shown in Eq. 4, each data vector
vi is represented by a binary code bi = {0, 1}l , where l is
the length of the binary code. To make this mapping from
data vectors to binary codes, a set of l hashing functions is
required

H(v) = (h1(v), h2(v), . . . , hl(v)) (5)

Each hash function generates a single bit in the binary
code, 0 or 1, based on specific criteria defined by the function
itself. The goal of the hashing functions is to generate the
same binary code for the ANN vectors.

After applying the hashing algorithm, the data vectors can
be divided into a set G of bins or buckets

G = {W1, W2, . . . , Wnw } (6)

each bin contains vectors with the same binary code. The
maximum number of bins would be 2l , i.e., nw ≤ 2l .

The approximation here is to consider all data vectors in
a single bin as ANNs, i.e., matches to each other. So, the set
of nearest neighbor vectors to a query vector x found inside
a bin W is

N N (x) = {y|y ∈ Wi , x ∈ Wi } (7)

Of course, the precision depends on the algorithm used
for hashing and the length of the binary code. It is clear that
increasing the binary code length increases the precision.

After the hashing algorithm is applied and the binary codes
are generated, it is time to index all data vectors inside one
or more hash tables using the binary codes as table keys.

When a query vector is submitted, its binary code is com-
puted and used to directly access the target bin in the hash
table. A step further beyond this is to search all vectors inside
the target bin for the nearest neighbor vectors within a dis-
tance threshold tv. Of course, exhaustive or brute-force search
would be very time consuming. In the next subsection, a first
step toward solving this problem is presented.

3.3 Single-Bin exhaustive-equivalent search (SBEES)

Exhaustively searching a target bin would be very time con-
suming due to the large number of vectors inside a single bin,
even if the distance measure used to match vectors is very
fast like the Hamming distance. So, up to now, the problem
with proposed approach is the time cost of searching for near
neighbor vectors inside a target bin.

To solve this problem, an exhaustive-search equivalent
algorithm is proposed. Exhaustive-search equivalent algo-
rithms yield same results as exact exhaustive-search algo-
rithms with significant speedup. The proposed algorithm is
inspired by the norm matching method introduced in NOM
[29]. In the proposed algorithm, which is shown in Algo-
rithm 1, the population count, i.e., the number of ones in
the binary string, is pre-computed offline for all vectors. The
algorithm computes lower and upper bounds of population
count that ensure a vector may result in a distance less than
the threshold. If a vector’s population count is outside these
bounds, it is assured that it will result in a distance greater than
the threshold, so it is skipped. As a result, the distance com-
putation are skipped for a large number of the vectors inside
the bin. This algorithm is different from NOM in some steps,
there is no sorting of norm values and there is no change of
the upper and lower bounds. The sorting step was skipped
because, in the case of binary vectors, it adds much process-
ing overhead while skipping a small group of vectors. The
upper and lower bounds are not updated because the goal of
this algorithm is to find the near neighbor vectors within a
constant distance threshold tv, not the exact nearest neighbor
vector as in NOM.

Computational Complexity of SBEES (Algorithm 1). Refer-
ring to Algorithm 1, let NW be the number of descriptors
in the bin Wi , and MW be the number of descriptors in the
bin Wi that achieves the condition in line 5. So, the two
comparisons in line 5 are executed NW times. Also, the dis-
tance computation step and another comparison in line 6 are
executed MW times. Assuming the descriptors consist of D
8-byte words, then the distance computation costs D XOR
instructions, D POPCNT instructions, and (D−1) additions.
Combining all previous terms, the total cost of the algorithm
is: (2 · NW +MW ) comparisons, (MW · D) XORs, (MW · D)

POPCNTs, and (MW · (D − 1)) additions.

3.4 Multi-Bin exhaustive-equivalent search (MBEES)

Quantization errors, as discussed previously, are the major
problem facing quantization, clustering, and hashing meth-
ods. This is because quantization may result in separating
near neighbor descriptors into different bins or buckets, in
other words, a hashing method may generate a hash code for
a descriptor that is different from its nearest neighbors’ hash
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Algorithm 1 Searching one target bin for the nearest neigh-
bors of a query vector using norm matching
Require: a query vector x , the target bin Wi where x ∈ Wi , a set of

population counts of vectors inside the bin Pi = {py |y ∈ Wi }, and
a distance threshold tv

Ensure: a set N N (x) containing the nearest neighbor vectors of the
query vector x within the distance threshold tv

1: px ← popcnt (x) 	 compute number of 1 bits in x
2: lower Bound ← px − tv
3: upper Bound ← px + tv
4: for all y|y ∈ W j do
5: if lower Bound ≤ py ≤ upper Bound then
6: if dH (x, y) ≤ tv then
7: Add y to the set N N (x)

8: end if
9: end if
10: end for

codes, resulting in retrieving wrong matches, i.e., false posi-
tives, this is clarified in Fig. 2. The proposed approach aims
to minimize these quantization errors; instead of only exam-
ining the single bin or bucket that contains the query descrip-
tor, the nearest neighbor bins or clusters are also examined to
minimize the quantization errors, as shown in Fig. 3. So, this
approach is named Multi-Bin Search. Of course, there will be
a trade-off between search time and accuracy as examining
more data will increase both the search time and accuracy.

To apply the Multi-Bin search approach, for each bin Wi ,
its nearest nwi bins are pre-computed and stored, as shown
in Algorithm 2. These nearest bins are selected based on a
distance threshold tw, which is empirically chosen, where
the distance between two bins d(W1, W2) is computed as
the distance between their centers, i.e., their average vectors.
This distance threshold depends, of course, on the binary
code length. So, the set containing the indices of the nearest
bins to some other bin wi is

N N (Wi ) = { j |d(Wi , W j ) ≤ tw} (8)

And a bin center ci for some bin wi with ni vectors is

ci =
∑ni

1 xi

ni
(9)

Fig. 3 Left In Single-Bin search, only the targeted bin is searched for
ANN points (the colored area). Right In Multi-Bin search, in addition
to the targeted bin, nearest neighbor bins are also searched for ANN
points (the colored area) (color figure online)

Algorithm 2 Computing nearest neighbor bins for each bin
Require: bin centers C = {c1, c2, .., cnw } of bins G =
{W1, W2, .., Wnw }, inter-bin distance threshold tw

Ensure: a set containing the indices of the nearest neighbor bins
for each bin P = {N N (W1), N N (W2), .., N N (Wnw )} where
N N (Wi ) = { j |d(Wi , W j ) ≤ tw}

1: for i = 1 to nw do
2: Add i to the set N N (Wi )

3: for j = i + 1 to nw do
4: if d(ci , c j ) ≤ tw then
5: Add j to the set N N (Wi )

6: Add i to the set N N (W j )

7: end if
8: end for
9: end for

Of course, the computation of nearest neighbor bins is
done offline as a pre-processing step. After computing these
nearest neighbor bins, they are searched, in addition to the
target bin, for the nearest neighbors of the query vector x as
shown in Algorithm 3. Then, only vectors within a threshold
tv , which is empirically chosen, are considered near neigh-
bors to x .

A remaining issue with the proposed approach is how to
tell that an image in the dataset is a match for a query image
depending on matching individual descriptors of the query
image. To resolve this issue, an algorithm is used to tell a per-
centage of matching between a query image and the candidate
images in the dataset. For each query image descriptor, if an
ANN is found, one point is added to the score of the image

Fig. 2 Left A query point q and
its nearest neighbor p inside the
same bin or cluster. Right A
query point q and its nearest
neighbor p inside a different bin
or cluster
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Algorithm 3 Searching multiple nearest neighbor bins for
matching vectors of a query
Require: query vector x , a set containing the indices of the nearest

neighbor bins N N (Wi ) where x ∈ Wi , and a distance threshold tv
Ensure: a set N N (x) containing the nearest neighbor vectors of the

query vector
1: px ← popcnt (x)

2: lower Bound ← px − tv
3: upper Bound ← px + tv
4: for all j | j ∈ N N (Wi ) do
5: for all y|y ∈ W j do
6: if lower Bound ≤ py ≤ upper Bound then
7: if dH (x, y) ≤ tv then
8: Add y to the set N N (x)

9: end if
10: end if
11: end for
12: end for

Algorithm 4 Computing image scores
Require: a set of images S = {I1, I2, .., Im}, a set N N (Ii ) =
{N N (v1), N N (v2), .., N N (vni ) containing the sets of the ANNs
of each descriptor vector in the query image Ii , and number of top
matched images k

Ensure: a set of the top k matched images R = {I1, I2, .., Ik}
1: Let Scores = {s1, s2, .., sm}
2: for k = 1 to m do
3: sk ← 0
4: end for
5: for i = 1 to ni do
6: for all y|y ∈ N N (vi ) do
7: imgI ndex ← j |y ∈ I j
8: simgI ndex ← simgI ndex + 1
9: end for
10: end for
11: Sort Scores descending
12: R← first k elements in Scores

to which it belongs. At the end, these scores are normalized
by dividing each image’s score by the sum of descriptors in
the image itself and the query image. The images are sorted
in descending order by their scores and the top k results are
picked. This method is shown in Algorithm 4.

A major factor that significantly increases the precision of
the resulting score of matching a pair of images is the actual
distance between pairs of local descriptors. Of course, the
shorter the distance between two descriptors is, the more
similar they become. In other words, the similarity score
between two descriptors is inversely proportional to the dis-
tance between them. So, it would be more precise to replace
line 8 in Algorithm 4 by:

simgI ndex ← simgI ndex +
(

1

d(vi , y)

)

. (10)

Computational Complexity of Algorithm 2. Referring to
Algorithm 2, assuming the total number of bins is N , then the
total number of iterations resulting from the two loops is (N ·

(N−1)/2). Recalling the distance computation cost from the
analysis of Algorithm 1, the total cost of Algorithm 2 is: (N ·
(N−1)/2) comparisons, (D ·N ·(N−1)/2) POPCNTs, (D ·
N ·(N−1)/2) XORs, and ((D−1)N ·(N−1)/2) additions.

Computational Complexity of MBEES (Algorithm 3). Refer-
ring to Algorithm 3, assume the total number of nearest
neighbor bins is P , an average number of descriptors in
a bin W is NW , and the number of descriptors achiev-
ing the condition in line 6 is K . Recalling the distance
computation cost from the analysis of Algorithm 1, the
total cost of Algorithm 3 is: (2P · NW + K ) compar-
isons, (DK ) POPCNTs, (DK ) XORs, and ((D − 1)K )

additions.

Computational Complexity of Algorithm 4. Referring to
Algorithm 4, assume the number of images is m, the number
of descriptors in the query image is U and the average num-
ber of nearest neighbors of each descriptor is V . Then, the
computational cost of Algorithm 4 is: (U V ) additions and
(m · log(m)) comparisons for sorting scores.

3.5 Reranking results

A result reranking method is presented, in which the top
k retrieved images are exhaustively re-matched with the
query image. This method depends on approximating the
exhaustive matching of a pair of images. Exhaustively match-
ing a pair of images, say I1 and I2, using their individual
descriptors requires finding the exact nearest neighbor of
each descriptor in I1 from all descriptors in I2 and vice
versa. This is a time-consuming method, so it is better to
approximate it using some threshold t and searching for the
first descriptor in I2 which is at distance d ≤ tv from each
descriptor in I1. Once a match descriptor found, the rest is
skipped.

This algorithm does not go backward, it only matches the
descriptors from one image to the other, as shown in Algo-
rithm 5. This algorithm also uses the norm matching method,
discussed earlier in the text, for speeding the search for
matched descriptors. The results will show that this approxi-
mated reranking method highly increases retrieval precision
while costing constant and small amount of time per single
query.

Computational Complexity of Algorithm 5. Referring to
Algorithm 5, assume the number of descriptors in the first
image is n, the number of descriptors in the second image
is m, and the number of descriptors achieving the condition
in line 6 is K . Recalling the computational cost of Algo-
rithm 1, the computational cost of Algorithm 5 is: (2nm+K )

comparisons, (K D) XORs, (K D) POPCNTs, (K D + 1)

additions.
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Algorithm 5 Approximated matching algorithm for match-
ing a pair of images
Require: two sets of image descriptor vectors I1 =
{v11, v12, .., v1n} , I2 = {v21, v22, .., v2m} where n ≥ m, their
corresponding population counts P1 = {p11, p12, .., p1n}, P2 =
{p21, p22, .., p2m}, and a distance threshold tv

Ensure: a score s representing the matching percentage between I1
and I2

1: s ← 0
2: for i = 1 to n do
3: lower Bound ← p1i − tv
4: upper Bound ← p1i + tv
5: for j = 1 to m do
6: if lower Bound ≤ p2 j ≤ upper Bound then
7: if dH (v1i , v2 j ) ≤ tv then
8: s ← s + 1
9: end if
10: end if
11: end for
12: end for
13: s ← s/(n + m)

4 Results and discussion

This section presents the evaluation protocol of the proposed
approach and the benchmarking dataset. Then, experimental
evaluation results are presented and discussed thoroughly.

4.1 Evaluation protocol

The proposed approach has been evaluated against three
famous datasets:

– The University of Kentucky Benchmarking (UKB) [21]:
consists of 10,200 images grouped into 2,550 categories,
each category contains four images that are considered
matches to each other. Given a query image, it is required
to retrieve the image itself and the other three images in
the same category as the top four results. So, the precision
measure is a floating-point score in the range from 0 to
4 representing the number of retrieved correct matches
in the top four results averaged over the number of run
queries.

– The INRIA Holidays [15]: a collection of 1,491 holiday
images, 500 of them being used as queries. The dataset
includes a very large variety of scene types (natural, man-
made, water and fire effects, etc.) and images are in high
resolution. The accuracy is measured by the mean Aver-
age Precision (mAP) as defined in [22].

– The MIRFLICKR-1M [12]: a collection consists of one
million images downloaded from the social photography
site Flickr through its public API. The images from this
dataset is merged as distractors with the UKB dataset to
evaluate the scalability of the proposed approach. The

precision measure used in this case is the same measure
used with the UKB dataset.

The proposed methods have been applied on the famous
binary hashing methods, LSH and SH. Another variation of
the LSH algorithm is evaluated, that requires to center the
data points around the origin, i.e., zero-centering the data
points, this variation is denoted LSHZC. BRISK local image
descriptors were generated of size 512 bits using a detec-
tion threshold of 70 for the FAST keypoint detector, these
parameters showed better recognition precision as stated in
[18]. The proposed methods has been compared to the BoVW
approach using the implementation of [7].

All experiments were run on an Intel®Core™i7-950
processor with 8 MB cache and 3.06 GHz clock speed,
and 8 GB memory. An advantage was taken of the newly
introduced POPCNT instruction which was introduced with
the Nehalem microarchitecture-based Core i7 processors.
This instruction efficiently computes the population count
of binary strings. POPCNT has been used in measuring
Hamming distances between bins or descriptors and in the
offline pre-computing of the population counts for all bins
and descriptors.

In all experiments, unless stated otherwise, all the 10,200
images of the UKB or the 500 queries of INRIA Holi-
days were run as queries against their corresponding dataset,
then the average score or precision was computed. Hash-
ing methods were tested with binary code lengths ranging
from 12 to 40. Binary code lengths are chosen with the
constraint that the maximum number of possibly generated
bins is smaller than the total number of image descriptors;
because that if the number of bins approaches the total num-
ber of descriptors, the efficiency of the approximate search
approaches that of the linear search, or could be worse. For
Multi-Bin search, inter-bin distance thresholds were given
values as a percent of the binary code lengths, a percent of
0.125 was picked, i.e., 1 bit for each 8 bits in the binary
code. This threshold empirically showed the best trade-off
between search time and accuracy. In the reranking step,
only the top 50 results were reranked to make a trade-
off between accuracy and time. For large-scale evaluation,
the UKB dataset was merged with various portions of the
MIRFLICKR-1M to evaluate the scalability of the proposed
approach.

All evaluated methods were denoted as follows:

– BoVW: Bag of Visual Words.
– SH: Spherical Hashing.
– LSH: Locality-Sensitive Hashing.
– LSHZC: LSH with Zero-Centered vectors.
– SBEES: Applying the Single-Bin Exhaustive Equivalent

Search on some hashing method.
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Fig. 4 Comparison of retrieval precision (UKB score) over the UKB
dataset between hashing methods before and after applying SBEES and
MBEES. The score is averaged over 10,200 queries. The results in this
figure is slightly different from those in [17] due to some modifications
in the implementation of the methods

– MBEES: Applying the Multi-Bin Exhaustive Equivalent
Search on some hashing method.

– R: Applying a Reranking step.

4.2 Single-bin exhaustive-equivalent search (SBEES)

Figure 4 shows the UKB scores of the evaluated methods
SH, LSH, and LSHZC, and the improvement in score result-
ing from applying the SBEES over the UKB dataset. These
scores are averaged over 10,200 queries. It is shown that
SBEES improves the retrieval precision (UKB score) of all
evaluated methods by various amounts depending on binary

code length. For instance, with binary code length 24, SBEES
improves the retrieval precision of SH, LSH, and LSHZC by
46.24, 73.46, and 23.77 % respectively.

Table 1 shows the average query times over 10,200 queries
for SH, LSH, and LSHZC before and after applying SBEES
and MBEES over the UKB dataset. Of course, original hash-
ing methods SH and LSHZC, especially with larger binary
code lengths, have the shortest query times but with very low
precision values as shown in Fig. 4. The LSH, LSH-SBEES,
and LSH-MBEES query times are too long compared to other
methods, this is due to the large sizes of bins generated by
LSH. This is shown in Fig. 5a, the total number of bins gener-
ated by each hashing method for various binary code lengths.
Also, Fig. 5b shows the average number of nearest neighbor
bins for each bin generated by each hashing method. It is
clear that LSH generates the smallest number of bins. This
yields larger bins that require more time to examine. LSHZC-
SBEES has the shortest times among all SBEES methods tak-
ing only 165 microseconds with binary code length of 24 bits.

4.3 Multi-bin exhaustive-equivalent search (MBEES)

Figure 4 shows the scores of the evaluated methods SH, LSH
and LSHZC, and the improvement in score resulting from
applying MBEES over the UKB dataset. It is shown that
MBEES improves the retrieval precision (UKB score) of all
evaluated methods. For instance, with binary code length 24,
MBEES improves the retrieval precision of SH, LSH, and
LSHZC by 104.32, 125.77, and 85.64 % respectively. This
improvement in retrieval precision is gained through search-
ing the extra neighbor bins to the target bin. The average
query times over 10,200 queries for MBEES are also shown
in Table 1. LSHZC-MBEES has the shortest times among

Table 1 Average query times of SBEES and MBEES compared to original hashing methods (milliseconds)

Search methods Binary code length

12 16 20 24 28 32 36 40

SH 7.753 1.603 0.330 0.188 0.095 0.063 0.048 0.044

LSH 154.024 119.785 44.162 3.869 2.248 0.331 0.385 0.094

LSHZC 5.979 0.770 0.222 0.070 0.045 0.093 0.040 0.038

SH-SBEES 85.644 17.257 2.875 1.324 0.527 0.314 0.148 0.118

LSH-SBEES 3,065.790 2,125.170 586.660 35.178 20.531 2.127 2.980 0.381

LSHZC-SBEES 55.656 5.723 1.230 0.165 0.136 0.055 0.059 0.113

SH-MBEES 691.121 698.419 150.290 221.746 85.964 135.536 48.338 180.063

LSH-MBEES 14,823.000 29,605.400 13,876.500 5,668.350 3,949.980 3,035.400 3,008.120 8,978.240

LSHZC-MBEES 538.413 401.179 96.911 86.607 21.601 12.317 2.705 1.556

SH-MBEES-R 738.969 745.868 196.933 268.293 131.5405 181.067 94.9854 227.83

LSH-MBEES-R 14,873.660 29,652.835 13,924.115 5,716.859 3,999.084 3,084.144 3,294.375 9,025.181

LSHZC-MBEES-R 587.607 451.363 146.307 134.680 68.847 60.160 48.852 83.299
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Fig. 5 a Total number of bins
generated by each hashing
method from the UKB dataset.
b Average number of nearest
neighbor bins for each bin
generated by each hashing
method from the UKB dataset
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Fig. 6 Comparison of retrieval precision (average UKB score) using
10,200 queries over the UKB dataset between SH-MBEES, LSH-
MBEES, and LSHZC-MBEES before and after applying the reranking
step

all MBEES methods taking 86.607 milliseconds with binary
code length of 24 bits.

Referring to Fig. 4, the improvement in retrieval precision
resulting from MBEES decreases while increasing the binary
code length. This is because increasing the binary code length
leads to increasing the number of generated bins from the
hashing methods, as shown in Fig. 5b. This leads to smaller
bins containing smaller number of descriptors examined by
the exhaustive-equivalent search.

Bringing together Fig. 4 and Table 1, it becomes clear
that, for the SBEES and MBEES methods, using smaller
binary code lengths in the hashing process leads to higher
retrieval precisions but with longer search times, and using
larger binary code lengths leads to shorter search times
but with lower retrieval precisions. So, the best case for
SBEES and MBEES methods is to use binary code lengths
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Fig. 7 Average query times using 10,200 queries over the UKB dataset
before and after applying the reranking step on SH-MBEES and
LSHZC-MBEES

in the mid-way between the minimum and maximum
allowed binary code lengths. Also, it becomes clear that
SH-SBEES and SH-MBEES achieve the best trade-off
between the retrieval precision and search time. Hence, SH
is better suited with SBEES and MBEES than LSH and
LSHZC.

4.4 Reranking results

Figure 6 shows a comparison of retrieval precision (UKB
score) using 10,200 queries over the UKB dataset between
MBEES before and after applying the reranking step. It
shows that the reranking step increases the precision to
all MBEES methods by about 10 % with increasing in
query time by around 50 milliseconds. Theaverage query
times of MBEES before and after applying the reranking
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Fig. 8 Top four results of the first four distinct image queries as they appear in the UKB dataset

step is shown in Fig. 7. It is clear that SH and LSHZC
gains higher increases in retrieval precision, after the rerank-
ing, than LSH while costing almost the same amounts of
time.

Figure 8 shows the top four results of the first four dis-
tinct query images as found in the UKB dataset. Original
LSH exceeded other original hashing methods in the first two
queries due to its larger bins. MBEES improved the results of
all queries except the third one, this is due to the complexity
of the image’s visual structure. The reranking step improved
SH and LSHZC by retrieving another true positive result, i.e.,
another correct match.

4.5 Comparison with state-of-art methods

Table 2 shows the retrieval precision (measured in mAP) and
average query times (measured in milliseconds) of the pro-
posed methods SBEES and MBEES compared to the BoVW
method over the Holidays dataset using 500 queries. It is
shown that the proposed methods mostly exceeds the BoVW
in precision and time, especially the SH-MBEES with binary
code length 24, which achieves mAP of 42.308 at 33.793 mil-
liseconds.

Figure 9 shows a comparison of the Recall@R (averaged
over 500 queries) between SBEES, MBEES methods (using

Table 2 Retrieval precision (mAP) and average query times (milliseconds) of the proposed methods compared to the BoVW method over the
Holidays dataset

Search methods Retrieval precision (mAP) Average query times (milliseconds)

BoVW (K = 6, L = 3) (K = 10, L = 3) (K = 6, L = 3) (K = 10, L = 3)
20.5045 34.534 23.9736 62.345
(BCL = 16) (BCL = 20) (BCL = 24) (BCL = 16) (BCL = 20) (BCL = 24)

SH-SBEES 31.840 37.095 35.515 1.766 0.484 0.201

LSH-SBEES 41.662 36.439 30.906 188.736 15.489 1.498

LSHZC-SBEES 35.364 33.422 29.233 0.906 0.167 0.077

SH-MBEES 38.209 41.973 42.308 79.178 22.177 33.793

LSH-MBEES 42.780 39.172 37.784 2,609.070 538.968 339.850

LSHZC-MBEES 40.188 41.899 39.707 55.850 9.557 12.134
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Fig. 10 UKB scores of the proposed methods applied on SH over
various sizes of the MIRFLICKR-1M dataset merged with the UKB
dataset. The labels on the data points represent the average query times in
milliseconds

24 bits) and BoVW (with two different vocabulary sizes) over
the Holidays dataset. It is shown that SBEES and MBEES
achieves higher recalls, in terms of the number of retrieved
items, faster than the BoVW.

4.6 Scalability evaluation

Figure 10 reveals the scalability of the proposed methods
applied on SH by showing the UKB scores of the proposed
methods over various sizes of the MIRFLICKR-1M dataset
merged with the UKB dataset. The labels on the data points
represent the average query times in milliseconds. In this

12 16 20 24 28 32 36 40

0

200

400

600

800

1,000

1,200

62% 62%

60%
52%

50% 31%
32%

7%

60%

59%

57% 43%
41% 26% 25% 7%

Binary code length (bits)

A
ve

ra
ge

qu
er

y
tim

e
(m

ill
is

ec
on

ds
) SH-MBEES without POPCNT

SH-MBEES with POPCNT

LSHZC-MBEES without POPCNT

LSHZC-MBEES with POPCNT

Fig. 11 Comparison between SH-MBEES and LSHZC-MBEES over
the UKB dataset with and without the instruction POPCNT. The labels
on the lines represents speedup

experiment, only 500 queries from the UKB dataset were
run as queries. Also, the number of descriptors per image
was restricted to 50 descriptors per image, the most respon-
sive descriptors were picked. It is shown that the evaluated
methods are highly scalable in terms of retrieval precision
and query time, especially with the 24-bit version of SH. It
is clear that using smaller binary code length (16 bits) results
in higher retrieval precisions but longer search times, on the
other hand, using larger binary code lengths (24 bits) results
in shorter search times but lower retrieval precisions. So, the
best way is to use medium binary code lengths (20 bits).

4.7 Using the POPCNT instruction

Figure 11 shows the speedup improvement introduced by the
POPCNT instruction, for the MBEES with SH, LSH, and
LSHZC. Speedup percentages are written over each binary
code length. Of course, this is not exactly the same speedup
introduced only by POPCNT as there are many other compu-
tations that are not dependable on POPCNT. POPCNT is used
in the query process to compute the population counts of the
descriptors of the query image and in computing the Ham-
ming distance between bins and individual image descriptors.

5 Conclusion

In this work, a large-scale image retrieval method has been
proposed which is based on binary hashing methods and
binary local image descriptors. In this method, not only a
target bin or bucket is searched, but also the nearest neighbor
bins to a target bin are searched. The nearest neighbor bins
are pre-computed, then an exhaustive-search equivalent algo-
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rithm is used to examine those bins. The proposed approach
can be applied to any hashing or clustering method to increase
precision. The proposed approach has been applied on some
hashing methods such as Spherical Hashing and LSH, the
evaluations showed significant improvement in retrieval pre-
cision over the original hashing methods and in comparison
with state-of-art approaches.

The work presented in this paper is a continuation to the
work in [17]. The approach has been better structured and
more evaluations on real-world and bigger datasets have been
carried out. Also, comparison with other state-of-art methods
has been presented.
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